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ChatlRIS output:
Democratize LLMs for HPC community o IRISIs a portable task-based runtime for extreme , T e
. . : . : . . . . : ranslate the next C code to IRIS: ' :}lpha‘ B S
o Creation of reliable, highly specialized and optimized Al assistants across major HPC components: Programing Models, heterogenous systems M el iris_init(&arge, &argv, 1);
. . . ) | alpha = 2.0; /| iris_mem iris_x:
. : = oat +) malloc « sizeo oa : x = (flo «) malloc(SIZE .« sizeof(flo ;
|/O, Math lerarles, TOOl.Ing, and beyond O Chat|R|S. ASSISt ¥= :g:oa: -; ma::oc:::;: . sizeogsgioa:;;; iris_(dataitn\elij_clreatZ((&iris_x l:(e SI(ZE ?tl:zeof(float));
. . . . . . . i|Z = (float +) malloc(SIZE . sizeof(float)); iris mem iris v:
o Production of high-quality software with level of trustworthiness of up to 90% higher than OpenAl ChatGPT-40 developersin the for (int i = 0; i < SIZE; ive) { X[i] = i: VL] - 1) ¥ 5(Fledf ) mallar (SIZE = ainasf(faat))"
i i SRR I S e i PRRRP iris_data_mem_create(&mem Y, Y, SIZE . sizeof(float));
) - taSkIfycatIOﬂ Of OpenMP, cujag‘:g::oc::voi:..;;s:;' ZEE . sizeo::ﬁoa:;;; j iris_mfelm IEEgx:e : o 3 ih .
A Reliable and Efficient Ecosystem CUDA and HIP | udabemepy (& x, . SIZE: sizeof (float) . cudattemepytostTabevice). | . e )
. . . 11| cudaMemcpy(d_y, vy, « sizeo oat) . cudaMemcpyHostToDevice) ; : . L 4 ‘
applications using IRIS ~ «| it theeads = sz u|iersiatanh braobs .
Based oh robust and open_source tools . sa:py<<<blocks. th:esiif;iqalph;. d_l>;. d_y, SIZE); | iris_graph_create(&graph);
o Noneedofrefinement - |adbesesndinze0 ). W e B
O COde Llama 7B parameter flne_tunlng’ LORA’ and PytorCh cc::alll):n::;:(szncgjzomgfz(é « sizeof(float), cudaMemcpyDeviceToHost) ; : i;:i‘:::t’g;g::::: :;:l:)t—;::l;)
19| cudaFree(d _x): ; = 0 - : .
: : ndaFrastdrs 2| void+ saxpy_params|[3]={&alpha, &iris_x , &iris_y };
o Low computational requirements : ;uﬂaimii:;i; o s sl e A A
. L. . 2| free(X); 22| iris_task_kernel(task0, “saxpy”, 1, NULL, &SIZE, NULL, 3,
o Code Llama (13GB), Al-Assistant (~100MB), training/testing data (~KB) | frae(x); saxpy_params , saxpy_params_info)
% 21| void« sdot_params|[2]={&iris_z . &iris_x};
No HIP code used for fine-tuning int sdot_params_info [2]={iris_w ., iris_r};

o The creation of Al-assistants takes in order of a few minutes (< 15 min) on 2x NVIDIA GPUs

iris_task_kernel(taskl, “"sdot”, 1, NULL, &SIZE, NULL, 2,
Context Code Llama ChatlRIS ChatGPT 40 sdot_params, sdot_params_info);
iris_graph_task(graph, saxpy_task, iris_default , NULL);
0 1) 0 27| iris_graph_task (graph, sdot_task, iris_default , NULL);
ChatHPC Library Documentation 0.00% 95.00% 70.00% oo T s

. _ _ OpenMP -> IRIS task code 0.00% 82.00% 10.00% | free ()
Accelerating Al assistants (LLMs) production for HPC | e
: : , : . . CUDA -> IRIS task code 0.00% 90.00% 50.00% | . '
o An easy-to-use front-end Python library for Al assistants' creation and testing focus on data quality
HIP -> IRIS task code* 0.00% 81.66% 10.00%
ChatHPC CLI: Interactive run session: . :
o P T T N o ChatPORT: Porting CUDA to SYCL/OpenMP Offloading for HPC Kernels
| $ chathpe verify = Verify the assistent training set 2| Context: Introduction to Kokkos .
$ chathpc test # Test the asssistent on unseen data $ cha:hpcf (lntfroductlion to Kokk:»s)> Wha;‘ is LayoutLeft? o ChatPORT uses benchmarks from HecBench with hundreds of kernels
| § chathpe run # Interactivly run the assistent .| LayoutLe refers column-major layou rhere consecutive entries i . . .
- > tthet same lrcolumnn::t” 2 ]2-D a?ravt ::\re c:ontigt.xov.lst in mel:;ory. : |mplemented In CUDA’ HlP’ SYCL and OpenMP Offloadlng
' === == ===
o ChatPORT provides competitive performance w.r.t. ChatGPT 40 using only
50 -

22 kernels for fine-tunin
Fine-Tuning and Testing .

o
.
« o F
a
M e
.
.t

©
3 o o
T 40+ ==
Supervised by HPC experts Training Set| #Kernels Benchmark (kernel) used c e
{'ql;\! 1*: "Can you translate this HIP code to Kokkos = 30 - Cﬁat;ORT- CUDA to O
1 1 global void stenci int n loat dx loat dy loat «u . . - : penMP
o Flne—tunl.ng consists of a JSON or YAML file with ---”'0.”_ ,] e _‘“ it ly. float +u. 1 5 accuracy, geodesic, lr, maxpool3d, perplexity § e~ ChatPORT: CUDA to SYCL
a collection of : int § = :.:‘.\.L\u:.\.;\ ‘ {,:..L-tn;m X + '.:nv;u:h:.\.:y > = q " heat2d. laol = r 5 20 - ’,‘,’--' Code LLama: CUDA to OpenMP
. int | = blockldx.y « blockDim.v + threadldx.y amage, Knn, nea , Llapltace , M AV ~ot .
question-context-answer tuples if(i >0&8 { <n-18% ) >0 &k | < n-1)] g P . td gﬁdfGLPL:ngz-DiUtDAoto SLCPL
| - ing (i L e B 3 15 advCubatureHex3D, backprop, channelShuffle, Ir, meanshift 101 * LGPT. CUDA to SYCL
o Testing data must be different to training (fine- b uli]0§-1] + wfi+1][§] + FLAI0H1) ; prop, , I, ChatGPT: CUDA to SYCL
tuning) data " = = Total number of kernels
) . 3 s g ™ . . 5 2 AR T . . . . . . 0 ! T T T
Expected answers can be added as part of the ek AR AR A 2 4 22 chemvy, clenergy, pathfinder, pointwise, swish, stddey, tissue 1 2 3 .

Training Sets

. [ *Kokkos parallel_for (\" stencil\”,
teStlng data for 14 Kokkos : : MDRangePolicy <Kokkos :: Rank<2>>
fast testing using ChatHPC b 1 il LR ol S L L ) L
AT Y o AN e i et ) ChatMAGMA: Porting HPC Applications to MAGMA
+ u(i.j-1 +« u(i+1,§) + f(i,))):
}) . .
I o MAGMAIs a portable and heterogeneous BLAS/LaPACK library for Intel/NVIDIA/AMD accelerators
i o ChatMAGMA assists application developers in the porting of vendor-specific BLAS/LaPACK
o codes (codes using Intel MKL, NVIDIA cuBLAS and cuSolver, or AMD hipBLAS and hipSolver) to MAGMA library
Evaluation o High level of trusthworthiness w.r.t. Code Llama (no fine-tuning) and ChatGPT 40
. - o Fine-tuning time less than 10 min. on 2x NVIDIA GPUs
Elevating LLM capabilities for HPC targets . g . _
: . . o Thisworkwas made in honor of Stan Tomov, father of the MAGMA library
o We measure the performance of the Al assistants as the percentage of the prompts within testing data sets that were
answered correc tl.y Translate the next NVIDIA cuSolver code to MAGMA:
o aeaiaisiaib i Ule A ChatMAGMA output:
double «dwork; TR = :
. _ . 1| int +dipiv; S bl
ChatHPC Al Assistant Code Llama Initial Refinement ChatGPT 40 double -dinfo: magma_queue_t queue;
cusolverDnHandle_t handle; magxna_de:’(;ceTt (c:e;: :
olv DnC t (&h dl ): ! magma__ge evice|&cdev ) S
ChatHPC for Kokkos 7.34% 77.51% 85.75% 48.34% Senbla TR (iantla’ SV Vice (umt n rxamt | dambla) 18 magma_queue_create (cdev &queue ):
cusolverDnDgetrf_bufferSize (handle ,n ,n ,dA n &lwork)): d°“b|eD'h“;; A
0 0 0 0 cudaMalloc (( void ++)&dA . n«n«sizeof(double)): magmabDouble_ptr ;
ChatADIOS2 0.00% 40.87% 100.00% 25.00% EErE T e e Y e e S magma_int_t - ipiv
cudaMalloc (( void «+«)&dipiv . nesizeof(int)); magma_int_t info;
ChatMAGMA 0.00% 44.26% 94.93% 0.00% cidadalige ((veid sy Rdints : sisseT LAY} magms_dmalloc_cpu(&ha n-n):
; daMemcpy(dA.hA nen«si f(double) ,cudaMer yHostToDevice ) : magma_dmalloc(&dA n«n);
ChatIRIS OOO% 87‘29% . 3500% ccl:nsaolvenrclg:)Dgetrf( }:a?)d:eu.f:d»\.:Tldweorkf‘:lipive.ndcipn‘foc;s;t SR magurm_imallm:_cpu(&ip:l\;'\.n)c;lA
‘ r «nesizeo ] rDevi oHost ) : _d ! ., 1, .0, s
ChatPORT 2.54% 20.00% 76.00% 79.66% e N | e e e
cudaFree(dwork) ; magma_dgetmatrix(n,n,dA n hA n, queue);
) ] cudaFree(dipiv); magma_free(dA);
Impacting correctness with more data cudaFree (dinfo): magma_free_cpu (hA) ;
free (hA) . magma_free_cpu(ipiv);

cusolverDnDestroy( handle) ; magma_queue_destroy(queue) ;
ChatHPC Al Assistant Extra Training Data used for Refinement
*No AMD hipBLAS or hipSolver code used for fine-tuning
ChatHPC for Kokkos 12.33% 17.77% _, _
Context Code Llama ChatMAGMA (Initial) ChatMAGMA (Refinement) ChatGPT (40)
ChatADIOS2 37.50% 62.85%

ChatMAGMA 51 7204 £3.370 Intel MKL 0.00% 37.50% 93.00% 0.00%
ChatPORT —— e NVIDIA cuBLAS/cuSolver 0.00% 50.00% 96.50% 0.00%
AMD hipBLAS/hipSolver* 0.00% 45.30% 95.30% 0.00%

ChatHPC Design: How to use it?

ChatADIOS2: HPC 1I/O for Applications using ADIOS2

ChatHPC Library (B) Al Assistants (Adapters) Expert-in-the-loop 3 easy steps o ADIOS2 is a C++ library to enable HPC High scalability and speedup on ORNL’s Frontier for parallel
ChatHPC for — . . writes to parallel file systems and in- I/0 and data compression
(I) Base Model RoKkos 2) Testing Data 1. Flne-tunlng memory communication Compression Rate 200 Speedup [
Code LI Programming ; ; ' . 10? 175
(Sode a:?)F — ChatiRIS || ™" systems Al assistant creation o ChatADIOS?2 assist developers with "
Ine-1unin . . e o~ © L12.5
S . 2. Testing ADIOS2 documentation, definition of & o i 125
rainin S ; ; . . v — npu e L npu L 100 5
Identify learning gaps ADIOS2 variables, data compressionand & | | Abios.2fp (oupu) | B g — horos2 (Guput | §
R O (3) Refinement 3. Refinement parallelization A 8 o] / "k |
ChatVAGHA (Fine Tuning) Filling learning gaps + fine tuning FR¢N4:H:R ~ ) N
(1) ChatHPC Merge Model + > - A 1
Adapters A) Trainin E) Refinement = = ° ’ '
ChatTAU PETETEREE ( )Data T * Data * npocs tois 2 néfis
Frofilers https://code.ornl.gov/ChatHPC/ChatHPC-project
Code Llama ChatADIOS2 (Initial) ChatADIOS2 (Refinement) ChatGPT (40)
ChatHPC for Kokkos: An Al Assistant for the C++ Kokkos Portable Front-End T ras (el 0.00% 27.00% 100.00% 33.00%
5 contexts/capabilities Variable Definition 0.00% 50.00% 100.00% 33.00%
. Documentation Context Code Llama ChatH PC.f.or Kokkos ChatHPQ for Kokkos | ChatGPT Data Compression 0.00% 25.00% 100.00% 0.00%
: (Initial) (Refinement) (40) Parallelizati . . . .
> Installation arallelization 0.00% 0.00% 100.00% 100.00%
Documentation 9.50% 89.00% - 81.00%
3. Development Installati 27.20% 78.00% 45.50%
ns ion . . — . .
4 Parallelization S ? ate ; 000/0 - 000/" 15 14(; Future Work: Facing the Challenges
. o evelopment . 0 . (1 = . 0
> ga”Sl;tF')?A”é Fgréaﬁg';y Parallelization 0.00% 45.00% 90.90% 66.70% Towards a fully Al-Assisted HPC Ecosystem
Den ’ ’ Translation 0.00% 55.58% 85.85% 33.40% | N | |
HIP ObenACCH 0 00 53 200, 87 200 21 3000 o Expand on fine-tuning using larger windows for o Elevate trustworthiness levels
en . . . . . .
it o — — — longer codes o LLM multi-modality for HPC targets
o O UDA e ' d‘; o R R R0 o Agentic Al for a better HPC-Al interoperability
*No pen an code usearoritine-tuning
Translate the next CUDA code to Kokkos 1:0 ) PPeeduP | oros Observations
__global__ void sdot(int n, float «x, float .y, float «result) | ém-t j:
ifm i = threadldx.x + blockldx.x « blockDim.x; g — sequential code (npu |2 3x105speedup on o Fine-tuning: We demonstrated the effectiveness of finetuning pretrained and relatively small LLMs (7-billion parameter
i;OT: rp;ilaztg)z{ 0.0: gm_d_ e o eos® Al convolution Code Llama model) by using expert-supervised data as a cost-effective approach to rapidly creating trustworthy HPC
UPdaFeA;d){[i] : yli l:d : F capabilities with high levels of correctness
atomic result , update); 1074 | ses04 . . o . . .
} | | | | | o Self-learning: Because of the recurring repetitive patterns found in multiple HPC cases, Al assistants can learn new
’ N, In[Outlput Size (N.N), Filter Size (16,16) capabilities, such as portability of AMD math libraries (ChatMAGMA), translation of CUDA or HIP codes (ChatHPC for
Chat for Kokkos output: - el | o Kokkos and ChatlRIS), or N-dimensional data definition (ChatADIOS2), without being provided specific training data for
e I o 250 ; : those cases, thereby reducing the required size of the training datasets
Cokkos :: parallel_reduce : 5 ——TrYTR o . 3%10° Speedu . . . . . o .
KOKKOS_LAMBDA( int i, float &update)| 8" oktos (o) %3 on DOTI;roduIc)t o Expert-in-the-loop: Performance of Al assistants improves considerably when human expertise is integrated into the
} .“Pd‘“e FRCENI) ST ;0 — === 00" Competetive fine-tuning process to create the training data and identify learning gaps, although experts may not be always available
Kokkos : : Sum<float >(result)); °  w.r.t.cuBLAS o Accessibility: ChatHPC infrastructure is accessible to everyone and requires only modest computational resources (a
10— " few minutes on a node with two NVIDIA GPUs). Also, we demonstrated that the data required for users to create new

capabilities is relatively small
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