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A three-dimensional two-phase thermal–hydraulic simulation code is employed for nuclear

reactor safety analysis. In this framework, the pressure field is obtained from a pressure-

correction equation that forms a globally coupled sparse linear system. As the pressure solution

accounts for over 80% of the total runtime, it represents the major computational bottleneck. To

address this limitation, the present work accelerates the pressure solver on a single-GPU

architecture by implementing and comparing three preconditioning strategies: diagonal, ILU(0),

and AMG. The BiCGStab solver components were ported to CUDA using cuSPARSE and cuBLAS

libraries. Performance was evaluated on KISTI's supercomputer comparing a 64-core Xeon Phi

7250 against an NVIDIA GH200 GPU. Results show that the diagonal preconditioner achieves the

best balance between convergence and efficiency due to its fully parallel structure, while ILU(0) is

limited by sparse triangular solves. The AMG solver converges rapidly but requires costly setup at

each time step, reducing its overall benefit.

GPU Performance Comparison of Preconditioned Krylov Solvers
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Pressure correction

𝐴𝛿𝑃 = 𝑏 + 𝐻 𝑢∗, 𝛿𝑃
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(2) Execution Time Breakdown and Speedup
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kkh_cuvecadd<<<blocksPerGrid, threadsPerBlock>>>
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Sparse matrix vector mul.

Reduce sum

(1) Diagonal, (2) ILU, (3) AMG

kkh_cuspmv(Ax, matA, x, handle_spmv, dBuffer, n);

↳ cusparseSpMV(handle_spmv,…, matA ,…, dBuffer);

cublasDdot(handle_dotp, n, r, 1, r, 1, &rho_a);

Elementwise vector add

Method

Pressure Equation as Sparse Linear System

__global__ void kkh_cuvecmul(double *c, double *a, double *b, int n)
{

int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx < n) {

c[idx] = a[idx] * b[idx];
}

}

kkh_cuspsv_init( handleL, matL, dBufferL, spsvDescrL
, CUSPARSE_FILL_MODE_LOWER, CUSPARSE_DIAG_TYPE_UNIT 
, L_rpnt, L_cinx, L_val, Ux, x , nnzL, n );

kkh_cuspsv_init( handleU, matU, dBufferU, spsvDescrU
, CUSPARSE_FILL_MODE_UPPER, CUSPARSE_DIAG_TYPE_NON_UNIT
, U_rpnt, U_cinx, U_val, Ux, x , nnzU, n );

AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, cfg);

AMGX_solver_setup(solver, Amatrix);

AMGX_solver_solve(solver, rhs, sol);

kkh_cuspsv(Ux, matL, b, handleL, dBufferL, spsvDescrL, n);
kkh_cuspsv( x, matU, Ux, handleU, dBufferU, spsvDescrU, n);

↳ cusparseSpSV_solve(handle, …, spsvDescr );

(3) AMG

(1) Diagonal

(2) ILU

GPU Acceleration of Preconditioned Krylov Solver

The algebraic multigrid (AMG) preconditioner

constructs a hierarchy of coarser grids to

accelerate convergence. NVIDIA's AmgX library

provides GPU-optimized AMG coupled with

GMRES solver.

The diagonal (Jacobi) preconditioner scales
each residual component by the inverse of
the corresponding diagonal entry. This
element-wise operation is embarrassingly
parallel, ideal for GPU execution with a
simple CUDA kernel.

The ILU(0) preconditioner requires incomplete

LU factorization followed by forward/backward

substitutions. The factorization is performed

on CPU due to sequential dependencies,

while triangular solves run on GPU via

cusparseSpSV.

A three-dimensional two-phase thermal–hydraulic code is

employed for nuclear reactor safety analysis. It employs

unstructured meshes for complex geometries and MPI-based

domain decomposition for parallel execution. The simulation

proceeds through momentum calculation, scalar transport

(mass and energy), and pressure correction stages. Among

these, the pressure correction step dominates the

computational cost, accounting for over 80% of the total

runtime. The pressure field is obtained by solving a globally

coupled sparse linear system derived from the pressure-

correction equation. This system must be solved at every

time step, making efficient solver design essential for large-

scale transient simulations.

• The pressure solver in the thermal–hydraulic code was successfully accelerated on a
single GPU using cuSPARSE and cuBLAS libraries, achieving significant speedup over
the 64-core CPU implementation.

• The diagonal preconditioner demonstrated the best balance between convergence
rate and computational efficiency, providing the highest speedup due to its simple
and fully parallel structure.

• The ILU(0) preconditioner reduces iteration count but is limited by sparse triangular
solve efficiency. The AMG solver converges extremely fast but requires costly setup
at each time step when matrixcoefficientschange.

Figure 2 shows the execution time breakdown. The GPU diagonal solver

achieves 6.7× speedup with high parallel efficiency. The GPU ILU shows

limited speedup due to sequential dependencies in sparse triangular solves

(cusparseSpSV). The AMG solver is extremely fast (0.04 sec solve time), but

since the pressure matrix changes every time step, the hierarchy must be

rebuilt each time step, making total runtime comparable to diagonal.

Fig2. Breakdown of execution time by solver component on CPU and GPU, with speedup ratios indicated.

(3) Residual Distribution at Convergence

Figure 1 compares residual convergence histories by iteration count (left) and wall-clock time (right). In terms of iterations,

ILU(0) converges in approximately 200 iterations while diagonal requires about 700, and AMG achieves convergence within

only 5 iterations. However, when measured by wall time, the GPU diagonal solver reaches the convergence threshold faster

than GPU ILU, despite requiring more iterations. This is because the diagonal preconditioner has much lower per-iteration

cost due to its simple parallel structure. The AMG solver demonstrates the fastest convergence in both metrics, completing

in under 0.1 seconds.

Fig1. Convergence history of preconditioned solvers: residual versus iteration count (left) and residual versus wall-clock time (right).

(1) Convergence History Comparison

Fig3. Spatial distribution of relative residual at convergence for each solver (left to right: CPU diagonal, CPU ILU, GPU diagonal, GPU ILU, GPU AMG). Red/opaque indicates high residual;

blue/transparent indicates low residual.
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