GPU Performance Comparison of Preconditioned Krylov Solvers
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Abstract Method

A three-dimensional two-phase thermal-hydraulic simulation code is employed for nuclear Pressure Equation as Sparse Linear System

reactor safety analysis. In this framework, the pressure field is obtained from a pressure-
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correction equation that forms a globally coupled sparse linear system. As the pressure solution ASP =b+ H(u",6P) 1 ‘E
accounts for over 80% of the total runtime, it represents the major computational bottleneck. To {HZCCG} cc), o). }
address this limitation, the present work accelerates the pressure solver on a single-GPU Lo ; or) [ (BBy), '
architecture by implementing and comparing three preconditioning strategies: diagonal, 1LU(O), (cc,) - {HZ‘CCB} (ccy),, 5p _ (Bl;ﬁ)j
and AMG. The BiCGStab solver components were ported to CUDA using cuSPARSE and cuBLAS - ‘ M (BB:G)N 000000 . \
libraries. Performance was evaluated on KISTl's supercomputer comparing a 64-core Xeon Phi (cC,),. (cc,),, - {HZ{ZCCBL
7250 against an NVIDIA GH200 GPU. Results show that the diagonal preconditioner achieves the
best balance between convergence and efficiency due to its fully parallel structure, while I.u(0)is ... 7
limited by sparse triangular solves. The AMG solver converges rapidly but requires costly setupat =

each time step, reducing its overall benefit. I I R
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Introduction GPU Acceleration of Preconditioned Krylov Solver

1. rg=b—Axy «—— Matmul

2. Choose an arbitrary vector 7 such that (%, ;) # 0, e.g., 7y = 1 Matmul Sparse matrix vector mul.
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i ) __global  void kkh _cuvecmul(double *c, double *a, double *b, int n) i l 11
L . . - The diagonal (Jacobi) preconditioner scales
Pressure correction o , : :
I int idx = threadIdx.x + blockDim.x * blockIdx.x: each residual component by the inverse of
. 1 if (idx < n) { . . .
Time ' (a) (m, m, m,| (Va, c[idx] = a[idx] * b[idx]; the corresponding diagonal entry. This
Advancing a =g |-| m, m, m,| |Va |VSP ) } element-wise operation is embarrassingly
") \g,) \m, m, m,) \Va, parallel, ideal for GPU execution with a
ASP = b + H(u*, 6P) simple CUDA kernel.
A three-dimensional two-phase thermal-hydraulic code is
® Comp.Physics I d f | f | . I | (2) ".U
m Comp.Momentum emp Oye or nuclear reactor sa ety dana ySIS' t emp OyS kkh cuspsv_init( handlelL, matL, dBufferL, spsvDescrL The ”_U(O) preconditioner requires incomplete
" Comp.Scalar ressure unstructured meshes for complex geometries and MPI-based e v U factorization followed by f d/backward
omp.Scalar-etc . . . . . . 0 pampmmd - TR YA SR SRS actorization followe orward/backwar
= etc domain decomposition for parallel execution. The simulation Kkh_cuspsv_init( HNENEESS. natU, dBuffery, sl Y
proceeds through momentum calculation, scalar transport » U_rpnt, U_cinx, U_val, Ux, x , nnzU, n ); . .
. on CPU due to sequential dependencies,
(maSS and energy), and pressure correction Stages. Among kkh cuspsv(Ux, matL, b, handleL, dBufferL, spsvDescrL, n); _ . .
, , kkh_cuspsv( x, matU, Ux, handleU, dBufferU, spsvDescrU, n); while triangular solves run on GPU via
these, the pressure correction step dominates the L cusparsespsV_solve ((ENEE, ., EOEEEE ); SHSy
: . cusparse :
computational cost, accounting for over 80% of the total P P
runtime. The pressure field is obtained by solving a globally (3) AMG
coupled sparse linear system derived from the pressure- AMGX_solver_create(&solver, rsrc, AMGX_mode dDDI, cfg); The algebraic multigrid (AMG) preconditioner
correction equation. This system must be solved at every AMGX_solver_setup(SBIVER, Amatrix): constructs a hierarchy of coarser grids to

time step, making efficient solver design essential for large- AMGX_solver._solve(BBIVER, rhs, sol); accelerate convergence. NVIDIA's AmgX library
scale transient simulations. provides GPU-optimized AMG coupled with
GMRES solver.
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Figl. Convergence history of preconditioned solvers: residual versus iteration count (left) and residual versus wall-clock time (right). Fig2. Breakdown of execution time by solver component on CPU and GPU, with speedup ratios indicated.
Figure 1 compares residual convergence histories by iteration count (left) and wall-clock time (right). In terms of iterations, Figure 2 shows the execution time breakdown. The GPU diagonal solver
ILU(O) converges in approximately 200 iterations while diagonal requires about 700, and AMG achieves convergence within achieves 6.7x speedup with high parallel efficiency. The GPU ILU shows
only 5 iterations. However, when measured by wall time, the GPU diagonal solver reaches the convergence threshold faster limited speedup due to sequential dependencies in sparse triangular solves
than GPU ILU, despite requiring more iterations. This is because the diagonal preconditioner has much lower per-iteration (cusparseSpSV). The AMG solver is extremely fast (0.04 sec solve time), but
cost due to its simple parallel structure. The AMG solver demonstrates the fastest convergence in both metrics, completing since the pressure matrix changes every time step, the hierarchy must be
in under 0.1 seconds. rebuilt each time step, making total runtime comparable to diagonal.

(3) Residual Distribution at Convergence
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*”“‘% o * The pressure solver in the thermal-hydraulic code was successfully accelerated on a

3, | single GPU using cuSPARSE and cuBLAS libraries, achieving significant speedup over
-§ ] | -8 the 64-core CPU implementation.

- i * The diagonal preconditioner demonstrated the best balance between convergence

rate and computational efficiency, providing the highest speedup due to its simple
. and fully parallel structure.
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Fig3. Spatial distribution of relative residual at convergence for each solver (left to right: CPU diagonal, CPU ILU, GPU diagonal, GPU ILU, GPU AMG). Red/opaque indicates high residual; * The ”—U(O) precondltloner reduces iteration count but is limited by Sparse trlangUIar
blue/transparent indicates low residual. solve efficiency. The AMG solver converges extremely fast but requires costly setup

at each time step when matrix coefficients change.

- This research is supported by the National Research Foundation of Korea (NRF) grant
i Korea |I‘IStItlltB of funded by the Korea government (MIST) (RS-2023-00282764). This work is also supported

S[:ience and T&Ch"ﬂlogy Informat“]n by Global top research lab funded by National research council of science and technology

(GTL24031-000).

~www.Kisti.re.kr



