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Motivation: non-Gaussian data assimilation Background: non-linear data assimilation

Method

Experimental results

Research problem: Estimate the hidden physical state  by fusing noisy, incomplete 
observations with a dynamical-model forecast inside a Bayesian update.

Why it matters: Estimating the true system state from observations is a common, fundamental 
task across the natural sciences: it powers daily weather prediction and are becoming equally 
vital in oceanography, hydrology, and other sciences. 

Key challenges: 
• Observations are noisy and incomplete.
• Non-linear dynamics and observation maps create non-Gaussian posteriors.
• Million-dimensional states make particle-filter weights collapse. 

Our strategy: deploy a Variational Autoencoder (VAE) with a linear latent transition: the linear 
step allows closed-form Bayesian updates, while neural encoders/decoders provide the needed 
non-Gaussianity for the posterior.

Xt
DA in a SSM
A state space model has two models: 

Dynamics model: 
Observation model: 

In sequential filtering, 

Predict step: 

Update step: 

Assuming that  is Gaussian,
 is Gaussian if  is linear.

Assuming that  is Gaussian, 
 is Gaussian if  is linear.

→ Nonlinearity in  or  results in non-Gaussian posterior distribution

p(Xt |Xt−1) = 𝒩[Xt; f(Xt), Q]
p(Yt |Xt) = 𝒩[Yt; h(Xt), R]

p(Xt+1 |Y1:t) = ∫ p(Xt |Y1:t)p(Xt+1 |Xt)dXt

p(Xt+1 |Y1:t+1) =
p(Xt+1 |Y1:t)p(Yt+1 |Xt+1)

p(Yt+1 |Y1:t)

p(Xt |Y1:t)
p(Xt+1 |Y1:t) f

p(Xt+1 |Y1:t)
p(Xt+1 |Y1:t+1) h

f h

Our strategy: “Expressive but computationally tractable posterior class”
• Gaussian posterior over the new latent variables 

• Linear latent dynamics so that the Gaussianity is conserved in the predict step
• Inverse observation operator  for the update step to keep Gaussianity 
with these, posterior remains always Gaussian: computationally tractable

• Nonlinear emission model to ensure representation power over  

ht

r(ht |Yt)

Xt

New SSM
Dynamics model: : Linear dynamics
Emission model: : nonlinear emission

With these new models,

Predict step: 

Update step: 

Filtered distribution over : 

p(ht |ht−1) = 𝒩[ht; Aht, Q]
p(Xt |ht) = 𝒩[Xt; ϕ(ht), R]

p(ht+1 |Y1:t) = ∫ p(ht |Y1:t)p(ht+1 |ht)dht

p(ht+1 |Y1:t+1) =
r(ht+1 |Yt+1)

ρ(ht)
p(Yt+1 |Xt+1)

Xt p(Xt |Y1:t) = ∫ p(ht |Y1:t)p(Xt |ht)dht

IOO(encoder) r(ht |Yt)

Transition matrix A
decoder ϕ(ht)

Emission noise R

Trainable components

Parametrized as block diagonal, see below

Encoder in VAE, extracts information from observations

Decoder in VAE, maps latent  to the physical variables ht Xt

Trained to represent the model confidence on  predictionXt

Features

Compute-efficient parametrization
We assume block-diagonal form for A

Even with a large number of , high-
dimensional variables, matrix multiplication & 
inversions are quick

(λi, θi)
A =

A1 0 . . . 0
0 A2 . . . 0

. . .
0 0 . . . An

Ai = eλi (cos θi, −sin θi

sin θi, cos θi )
Our Deep Bayesian Filter builds on the dynamical VAE (Girin et al., 2021): linear-
Gaussian latent dynamics yield closed-form Bayesian updates, while the nonlinear 
decoder keeps the posterior over physical variables expressive

Training stability
Training RNN-based DVAEs is often unstable because 
their gradients can explode or vanish.

Our DBF instead advances the state with a fixed matrix; 
as long as its eigenvalues stay near or below one, 
predictions and losses remain bounded.

Training objective

Joint ELBO: ∫ q(ht |Y1:t)
p(ht, Xt, Yt |X1:t−1, Y1:t−1)

q(ht |Y1:t)
≤ log p(Xt, Yt |X1:t−1, Y1:t−1)

Model: SPEEDY atmospheric model.  grid,  (east-west wind),  (north-south wind),  (temperature),  (water content),  (surface pressure)

Architecture:  latent variable dimensions, transformer for encoder  and decoder 

Results: Even with  observation grid ( of all grids), our method successfully recover the atmospheric state

Future work: Higher  dimension problems, or an obs-to-obs application like Aardvark/AI-DOP?
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Figure 1: Schematic figure for a typical data assimilation problem settings

Figure 2: left panel: graphical model of our method. Right panel: inference structure.

Figure 3: an example histogram for  

abs(eigenvalue) of the dynamics matrix  
trained for a Lorenz96 experiment

A

Figure 4: left panel compares the nature run (top left), observation stations (bottom left), LETKF inference result (top right), and DBF inference result (bottom right). 

Center and right panels show the inference RMSE against the nature run, averaged over the assimilation window (5 days). Center panel shows  and the right panel shows .u T

 (easterly wind)u  (Temperature)T

= 𝒩[ht; fθ(Yt), Gθ(Yt)]

r(ht |Yt) =
ρ(ht)p(Yt |ht)

∫ ρ(ht)p(Yt |ht)dht

ρ(ht) = 𝒩(ht; m, V )
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