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Motivation: non-Gaussian data assimilation

Research problem: Estimate the hidden physical state X, by fusing noisy, incomplete
observations with a dynamical-model forecast inside a Bayesian update.

Why it matters: Estimating the true system state from observations is a common, fundamental
task across the natural sciences: it powers daily weather prediction and are becoming equally
vital in oceanography, hydrology, and other sciences.

Key challenges:
« Observations are noisy and incomplete.
« Non-linear dynamics and observation maps create non-Gaussian posteriors.

- Million-dimensional states make particle-filter weights collapse.

Our strategy: deploy a Variational Autoencoder (VAE) with a linear latent transition: the linear
step allows closed-form Bayesian updates, while neural encoders/decoders provide the needed

non-Gaussianity for the posterior.
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Figure 1: Schematic figure for a typical data assimilation problem settings

Background: non-linear data assimilation

DA in a SSM
A state space model has two models:

Dynamics model: p(X, | X,_;) = /[X; (X)), O]
Observation model: p(Y;| X)) = /'[Y,; h(X)), R]

In sequential filtering,

Predict step: p(X,, (| Y;.) = JP(th Y,
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Update step: p(X,, (| Y}..41) =

p(Yq | Y.

Assuming that p(X, | Y;.,) is Gaussian,
p(X,.1|Y,.,) is Gaussian if fis linear.

Assuming that p(X,, ;| Y;.,) is Gaussian,
P(X, 1| Y].,41) is Gaussian if /i is linear.

— Nonlinearity in f or /1 results in non-Gaussian posterior distribution

Method

Our strategy: “Expressive but computationally tractable posterior class”
. Gaussian posterior over the new latent variables /1,
- Linear latent dynamics so that the Gaussianity is conserved in the predict step
. Inverse observation operator (/.| Y,) for the update step to keep Gaussianity

with these, posterior remains always Gaussian: computationally tractable
. Nonlinear emission model to ensure representation power over X,
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Figure 2: |eft panel: graphical model of our method. Right panel: inference structure.

New SSM
Dynamics model: p(h,| h,_) = N'[h,; Ah,, Q]: Linear dynamics
Emission model: p(X,| h,) = N[X; ¢(h,), R]: nonlinear emission

With these new models, ph) = N(h;m,V)
Predict step: p(h.1 | Y1) = | ph | Yy )p(h, i | )R, rn| vy = —2L0P LA
-+ .t 1 £1:0)P\y 1 | 1Y)AR, N = (Y, [ hdh,
Update step: (/1 | Yy..41) = t;(h )H_ Pipi 1 X 1)
{

Filtered distribution over X;: p(X,| Y;.,) = Jp(ht| Y, )p(X,| h)dh,

Training objective

ph, X, Y, | Xi—15 Y121

Joint ELBO: Jq(ht| Y,..)

<logp(X,, Y, | Xi.,_1, Y1.,1)

q (ht | Y lzt)

Trainable components Features

I00(encoder) r(h,| Y)) Encoder in VAE, extracts information from observations

decoder ¢(h,) Decoder in VAE, maps latent 7, to the physical variables X,

Transition matrix A Parametrized as block diagonal, see below

Emission noise R Trained to represent the model confidence on X, prediction
Compute-efficient parametrization (A, 0 0"
We assume block-diagonal form for A A=10 4 0
Even with a large number of (4;, @), high- 0 0 A,

dimensional variables, matrix multiplication &

Inversions are quick

Our Deep Bayesian Filter builds on the dynamical VAE (Girin et al., 2021): linear-
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Gaussian latent dynamics yield closed-form Bayesian updates, while the nonlinear
decoder keeps the posterior over physical variables expressive

Training stability

Training RNN-based DVAEs is often unstable because

their gradients can explode or vanish.

Our DBF instead advances the state with a fixed matrix;
as long as its eigenvalues stay near or below one,

predictions and losses remain bounded.
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Figure 3: an example histogram for

abs(eigenvalue) of the dynamics matrix A

trained for a Lorenz96 experiment
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Figure 4. eft panel compares the nature run (top left), observation stations (bottom left), LETKF inference result (top right), and DBF inference result (bottom right).

Center and right panels show the inference RMSE against the nature run, averaged over the assimilation window (5 days). Center panel shows u# and the right panel shows T,

Model: SPEEDY atmospheric model. 8 X 48 X 96 grid, u (east-west wind), v (north-south wind), 1" (temperature), q (water content), p. (surface pressure) Scan me

Architecture: 20438 latent variable dimensions, transformer for encoder (Y — h) and decoder (7 — X)

Results: Even with 8 X 3 X 6 observation grid (0.4 % of all grids), our method successfully recover the atmospheric state

Future work: Higher ( ~ 10”) dimension problems, or an obs-to-obs application like Aardvark/Al-DOP?
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