
Chebyshev Accelerated Subspsace Eigensolvers for Pseudo-hermitian Hamiltonians
Clément Richefort (c.richefort@fz-juelich.de), Xinzhe Wu, Edoardo Di Napoli

Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany

ChASE Algorithm

Start

input: N , A
input: type(A) ∈
{hermitian, pseudo-hermitian}
input: nev, nex, tol, deg

m[nev] ← deg
size(X̂) ← 0

(λ̃1, λ̃nev+nex, λ̃N , V̂) ← lanczos

V̂ ← filter(V̂ ,m)

V ′ ← isHermitian(A) ? V̂ : SV̂

Q̂ ← orthonormalize([V ′, X̂])

isHermitian(A)?

(V̂ , Λ̃) ← Normal-
Rayleigh-Ritz(A, Q̂)

(V̂ , Λ̃) ← Oblique-
Rayleigh-Ritz(A, Q̂)

res [] ← residuals(V̂ , Λ̃)

(V̂ ,Λ, X̂) ← defl&lock(V̂ , Λ̃, res)

(λ̃1, λ̃nev+nex) ← (min, max)
[
Λ Λ̃

]

m ← degrees(tol,res)
sort(res,V̂ , Λ̃;m)

size(X̂) ≥ nev

output: (X̂,Λ), res
output: timers, decorators

End

yes

no

yes

no

§ GitHub: https://github.com/ChASE-library/ChASE

E License: Open source – BSD 3-Clause

U Latest release: v1.7.0-rc2 – January, 2026

[Docs: chase-library.github.io/ChASE/quick-start.html

« Easy-to-integrate: ready-to-use C++ to Fortran interface

¨ accessible via ELSI (Electronic Structure Infrastructure)

λ1 λnev λn

−α
2

0

α
2

α

λi

α
p
(λ

i)

Figure: Illustration of the filter on an uniformly distributed random vector

Problem Definition

The Hamiltonian H derived by the BSE and by the DFT is of the form

H :=

[
A B
−B̄ −Ā

]
with A = A∗ and B = BT .

The matrix H is said “pseudo-hermitian” as it satisfies

SH = H∗S with S :=

[
I 0
0 −I

]
.

This poster focuses on the most common case in which the eigenproblem

Hv = λv ⇔ SHv = λSv with v ∈ Cn and λ ∈ R

is “definite”, meaning that SH is hermitian positive definite (HPD), i.e.,

SH =

[
A B
B̄ Ā

]
≻ 0.

Summary of the key properties :

The spectrum is real, i.e.,
λ(H) ∈ R.

Eigenvalues appear in positive-negative pairs, such that

Hv = λv ⇔ HK v̄ = −λ̄K v̄ with K :=

[
0 I
I 0

]
.

The left and right eigenvectors are related such that

U = SV .

The set of right eigenvectors is not orthonormal, but satisfies

V ∗SV = D with D a non-singular real diagonal matrix.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Real axis

Im
ag

ax
is

λi

(a) λi(H) - SH is indefinite

−10 0 10

−10

0

10

Real axis

Im
ag

ax
is

λi

(b) λi(H) - SH is HPD

Major Algorithmic Innovations

Rayleigh-Ritz for pseudo-hermitian Hamiltonian
Orthonormal vs. Oblique Rayleigh-Ritz

Hermitian case :
Orthonormal Projection :

ỹ∗
(

Ax̃ − ω̃x̃
)
= 0, ∀ỹ ∈ range(Q).

Quadratic Convergence :

|ω − ω̃| ≤ |σv|2 ∥A− ωI∥2,

Single basis :

lim
Q→V

Q∗AQ = Ω.

Non-hermitian case :
Oblique Projection :

ũ∗
(

Hṽ − λ̃ṽ
)
= 0, with ṽ ∈ range(Q) and ∀ũ ∈ range(QL),

Non-immediate Quadratic Convergence :
∣∣λ− λ̃

∣∣ ≤
∣∣δ̃
∣∣−1 ·

∣∣σ̄uσv
∣∣ ·

∥∥H − λI
∥∥

2, δ̃ := ũ∗ṽ

Dual basis, such that Q∗LQ = I:

lim
Q→V , QL→U

Q∗LHQ = Λ.

General Form of Dual Basis

Let M be a non-singular matrix. A dual basis QL is defined as

QL := [SQ −Q (Q∗SQ −M)]M−1.

Since Q is orthonormal (Q∗Q = I), we have

Q∗LQ =
(
[SQ −Q(Q∗SQ −M)]M−1

)∗
Q

= (M−1)∗
(
Q∗S∗Q −Q∗S∗Q + M∗

)

= (M−1)∗M∗ = I.

The Rayleigh-Quotient G := Q∗LHQ is not hermitian.

Solving a spectrally equivalent hermitian eigenvalue problem

Setting M := Q∗SQ leads to

QL := SQ
(
Q∗SQ

)−1 ⇒ G =
(
Q∗SQ

)−1Q∗SHQ

which is equivalent to solving the hermitian eigenvalue problem

L∗
(
Q∗SQ

)−1Ly = λ̃y , with y = L∗w and z = Ly .

with L the Cholesky factor of the decomposition

Q∗SHQ = LL∗ since SH is HPD.

Construction of the hermitian Rayleigh Quotient with implicit dual space
1: Compute T ← HQ ▷ BLAS GEMM n2k
2: Flip the sign of the lower half T ← ST ▷ INTERNAL FLIP n

2k
3: Compute W ← Q∗T ▷ BLAS GEMM nk2

4: Factorize L← CHOLESKY(W) ▷ LLAPACK PORTF k3

5: Compute M ← I − 2Q∗2Q2 (= Q∗SQ) ▷ BLAS GEMM n2

4 k
6: Copy G← M ▷ BLAS COPY k2

7: Solve G← L−1(GL−∗) ▷ 2 LLAPACK TRSM 2k2

8: Solve GY = Λ̃Y ▷ LLAPACK HEEVD k3

9: Back-transform & Return Λ̃,Y ← Λ̃−1,L−1Y ▷ LLAPACK TRSM k2

Key benefits of the Hermitian Rayleigh-Quotient

Equivalent quality for left and right eigenspaces

∥(I − Π(QL))u∥2 = ∥(I − Π(Q))v∥2 ⇒ O(σv) = O(σu)

Bounded
∣∣δ̃
∣∣−1, such that

∣∣δ̃
∣∣−1 ≤

√
cond

(
H
)

∣∣λmin

(
Q∗SQ

)∣∣

These two features lead to quadratic convergence :

∣∣λ− λ̃
∣∣ ≤ κ · O

(
σ2

v
)

with κ :=

√
cond

(
H
)
·
∥∥H − λI

∥∥
2∣∣λmin

(
Q∗SQ

)∣∣ .

Alternative Rayleigh-Ritz

Setting M := diag(Q∗SQ) leads to

QL := [SQ −Q (Q∗SQ − diag(Q∗SQ))]diag−1(Q∗SQ),

and the Rayleigh-Quotient G is given by

G = diag−1(Q∗SQ) [Q∗SHQ − (Q∗SQ − diag(Q∗SQ))Q∗HQ] .

This alternative Rayleigh-Ritz requires a non-hermitian
eigensolver (GEEV).

0 2 4 6 8 10
10−16

10−11

10−6

10−1

R
e
si
d
u
a
l
e
r
r
o
r

Pseudo-Hermitian
Hermitian

(a) First 100th

0 2 4 6 8 10
10−16

10−11

10−6

10−1

Iteration

R
e
si
d
u
a
l
e
r
r
o
r

(b) Last 100th

Figure: Evolution of the residuals over nev = 1000 for a
Silicon pseudo-hermitian H of size n = 23552 generated

with Yambo

Flip-sign functions that emulate the multiplication by S

(a) Block-Block Distribution (b) Block-Cyclic Distribution

Figure: Flip sign function depending on the data distribution - (gray) sign flipped area, (red)
MPI world rank, (blue) MPI column rank

Communication avoiding parallel GEMMs

Chebyshev three-term recurrence relation

Vi+1 = αiAVi + βiVi−1, V1 = AV0, V0 = RAND

1 V = random(N,nevex)
2 GEMM(’N’,’N’,alpha,A,V,0,W)
3 for d <= degree:
4 GEMM(’N’,’N’,alpha,A,W,beta,V)
5 V,W = W,V

k

n
4Q0 Q0 Q0 Q0

Q1 Q1 Q1 Q1

Q2 Q2 Q2 Q2

Q3 Q3 Q3 Q3

H1,: ×Q = H∗
:,1 ×Q = T

H00 H01 H02 H03

H∗
01 H11 H12 H11

H∗
02 H∗

12 H22 H23

H∗
03 H∗

13 H∗
23 H33

× =

T0 T1 T2 T3

T0 T1 T2 T3

T0 T1 T2 T3

T0 T1 T2 T3

(a) Hermitian Parallel GEMM

k

n
4Q0 Q0 Q0 Q0

Q1 Q1 Q1 Q1

−Q2 −Q2 −Q2 −Q2

−Q3 −Q3 −Q3 −Q3

SH1,: ×Q = H∗
:,1 × SQ = ST

A00 A01 B00 B01

A∗
01 A11 BT

01
B11

−B̄00 −B̄01 −Ā00 −Ā01

−B̄T
01 −B̄11 −Ā∗

01 −Ā11

× =

T0 T1 −T2 −T3

T0 T1 −T2 −T3

T0 T1 −T2 −T3

T0 T1 −T2 −T3

(b) Pseudo-Hermitian Parallel GEMM

Numerical and Parallel Performance Evaluation

Testing Platforms

Component JUWELS Booster @JSC Fugaku @Riken-RCCS

Nodes 936 nodes 158,976 nodes

CPU 2× AMD EPYC 7402, 96 threads FUJITSU A64FX, 48 cores @ 2.2 GHz

CPU Memory 512 GB DDR4 RAM 32 GB HBM2 @ 1024 GB/s

GPU 4× A100 (40 GB) / NVLink 3

MPI grid 1 node / 4 GPUs / 4 ranks 1 node / 4 ranks / 48 threads

Convergence

Si-23k MoS2-64k Si-79k MoS2-104k
0

10

20

30

Matrix

It
e
r
a
t
io
n
s 1% 2% 3%

(a) tol = 10−8

Si-23k MoS2-64k Si-79k MoS2-104k
0

10

20

30

Matrix

It
e
r
a
t
io
n
s

(b) tol = 10−9

Figure: Number of iterations with respect to the matrix size - GEEV (dashed bars) vs. HEEVD (plain bars)

Percentage of TPP

JUWELS Booster - 16 GPUs Fugaku - 64 ranks small & med vs. 256 ranks large

n nev = n × 1% nev = n × 2% nev = n × 3% nev = n × 1% nev = n × 2% nev = n × 3%
23552 36.2 43.8 48.4 29.872 31.642 32.874
64512 78.2 78.1 78.2 42.9 41.9 41.3

104832 86.8 84.4 81.3 42.2 38.7 33.7

Table: Percentage of TPP occupied by ChASE for each matrix size with respect to nev

Benchmark on JUWELS Booster

16 64 100 144 256

0.5

2

5

12
25

Number of GPUs

T
im

e
(s
e
c
)

16 64 100 144 256

65
130
260
520
1040
2080
4160

Number of GPUs

T
F
L
O
P
/
s

16 64 100 144 256

0.5

1

Number of GPUs

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a small matrix of size n = 23,552 - nev = 235,471,706

16 64 100 144 256

2

5

12

25

50

Number of GPUs

T
im

e
(s
e
c
)

16 64 100 144 256

65
130
260
520
1040
2080
4160

Number of GPUs

T
F
L
O
P
/
s

16 64 100 144 256

0.5

1

Number of GPUs

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a medium matrix of size n = 64,512 - nev = 645,1290,1935

16 64 100 144 256
12

25

50

100

200

Number of GPUs

T
im

e
(s
e
c
)

16 64 100 144 256

65
130
260
520
1040
2080
4160

Number of GPUs

T
F
L
O
P
/
s

16 64 100 144 256

0.5

1

Number of GPUs

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a large matrix of size n = 104,832 - nev = 1048,2096,3144

Benchmark on Fugaku

64 256 1024 4096 16384

0.5

2

5
12
25
50
100

Number of mpi ranks

T
im

e
(s
e
c
)

64 256 1024 4096 16384

16
32
65
130
260
520
1040
2080

Number of mpi ranks

T
F
L
O
P
/
s

64 256 1024 4096 16384

0.5

1

Number of mpi ranks

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a small matrix of size n = 23,552 - nev = 235,471,706

64 256 1024 4096 16384

5

12
25
50
100
200
400

Number of mpi ranks

T
im

e
(s
e
c
)

64 256 1024 4096 16384

16
32
65
130
260
520
1040
2080

Number of mpi ranks

T
F
L
O
P
/
s

64 256 1024 4096 16384

0.5

1

Number of mpi ranks

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a medium matrix of size n = 64,512 - nev = 645,1290,1935

256 1024 4096 16384

25

50

100

200

400

Number of mpi ranks

T
im

e
(s
e
c
)

256 1024 4096 16384

16
32
65
130
260
520
1040
2080

Number of mpi ranks

T
F
L
O
P
/
s

256 1024 4096 16384

0.5

1

Number of mpi ranks

P
a
r
.
E
f
f
ic
ie
n
c
y

Figure: Performance benchmark on a large matrix of size n = 104,832 - nev = 1048,2096,3144

Member of the Helmholtz Association

[1] J. Winkelmann, P. Springer, and E. Di Napoli. ChASE: a Chebyshev Accelerated Subspace iteration Eigensolver for sequences
of Hermitian eigenvalue problems. ACM TOMS 45(2), Art.21 (2019).

[2] M. Berljafa, D. Wortmann, and E. Di Napoli. An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems.
Concurrency Computat.: Pract. Exper. 27 (2015), pp. 905–922.

[3] X. Wu, D. Davidović, S. Achilles, E. Di Napoli. ChASE: a distributed hybrid CPU-GPU eigensolver for large-scale hermitian
eigenvalue problems. PASC22.

[4] X. Wu, E. Di Napoli. Advancing the distributed Multi-GPU ChASE library through algorithm optimization and NCCL. SC’23
Workshops, pp. 1688–1696.

https://github.com/ChASE-library/ChASE
chase-library.github.io/ChASE/quick-start.html

