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ChASE Algorithm Problem Definition

The Hamiltonian H derived by the BSE and by the DFT is of the form
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Figure: lllustration of the filter on an uniformly distributed random vector VSV = D with D a non-singular real diagonal matrix (b) \i(H) - SH is HPD

Major Algorithmic Innovations
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Solving a spectrally equivalent hermitian eigenvalue problem Communication avoidi ng paral lel GEMMs
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Numerical and Parallel Performance Evaluation

Testing Platforms Benchmark on JUWELS Booster Benchmark on Fugaku
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Figure: Performance benchmark on a small matrix of size n = 23,552 - nev = 235, , 706 Figure: Performance benchmark on a small matrix of size n = 23,552 - nev = 235, , 706
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(a) tol =108 (b) tol =10-° Figure: Performance benchmark on a medium matrix of size n = 64,512 - nev = 645, , 1935 Figure: Performance benchmark on a medium matrix of size n = 64,512 - nev = 645, ,1935
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Figure: Performance benchmark on a /arge matrix of size n = 104,832 - nev = 1048, ,3144 Figure: Performance benchmark on a /arge matrix of size n = 104,832 - nev = 1048, , 3144

Table: Percentage of TPP occupied by ChASE for each matrix size with respect to nev
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