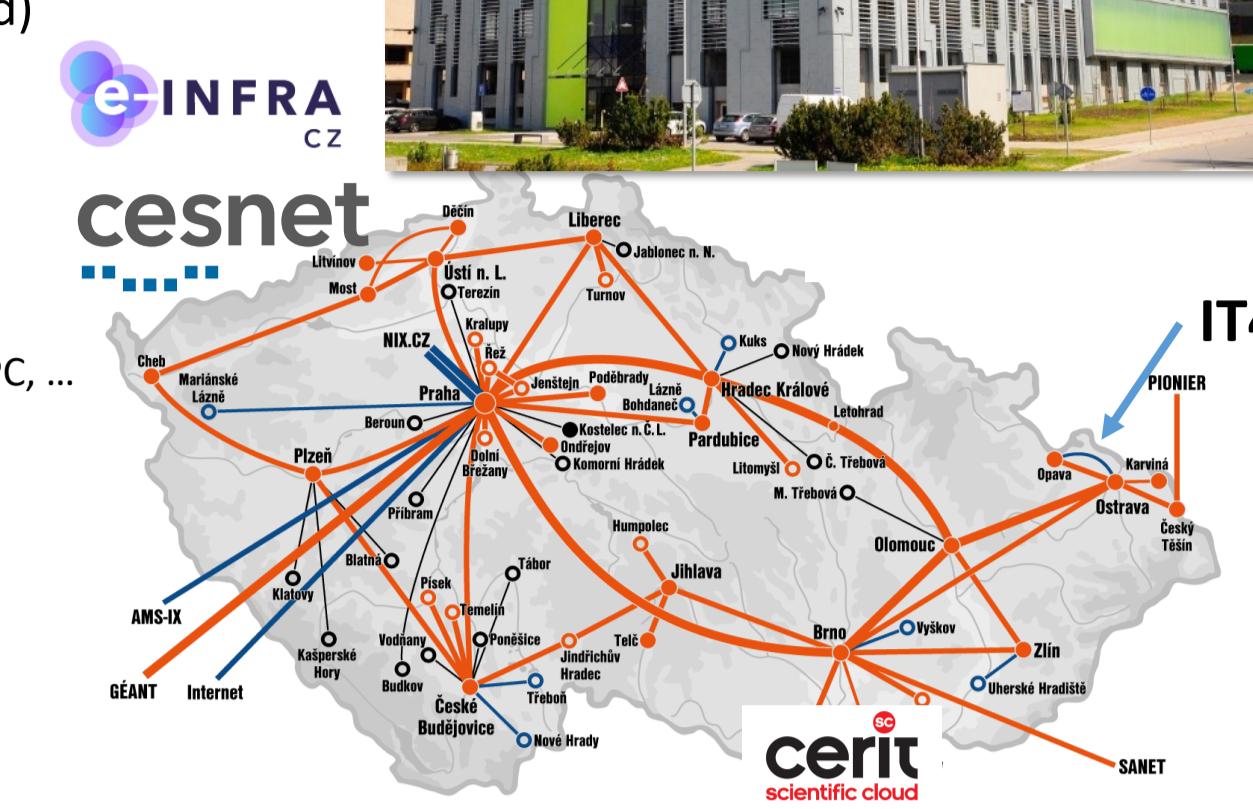


A SOFTWARE APPROACH FOR ENERGY-EFFICIENT HPC WITH MERIC

Ondrej Vysocky, Lubomir Riha, Tomas Kozubek
IT4Innovations National Supercomputing Centre, VSB-TU Ostrava, Ostrava, Czech Republic

<https://code.it4i.cz/energy-efficiency/meric-suite/meric>


IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER CZECH REPUBLIC

About us:

- Established in 2011 in Ostrava, at VSB – Technical University of Ostrava
- Member of e-INFRA CZ, a strategic research infrastructure of Czechia
 - co-operating LUMI supercomputer (TOP #9 in the world)
- operating **Barbora** & **Karolina** supercomputers, quantum computer **VLQ**
- co-operating LUMI supercomputer (TOP #9 in the world)

Research, collaboration & training

- 5 research laboratories, 120 FTE in HPC, HPDA, AI, QC
- Participating in EU HPC initiatives:
 - EuroHPC JU, EUDAT, ETP4HPC, BDVA, EOSC, QUIC, VI-HPS, WHPC, ...
- Strong international collaboration
 - 25+ HE/DEP ongoing projects
- Cooperation with industry and public institutions
 - NCC in HPC, EDIH OVA, LUMI and Czech AI Factories
- Training and educational activities

RUNTIME SYSTEM

MERIC runtime system provides dynamic tuning of parallel applications running in the HPC environment

- Performance and power aware
- lightweight & easy to install & easy to use
- C/C++ API, Fortran module, Python module
- MPI, OpenMP, CUDA parallelization

Goals:

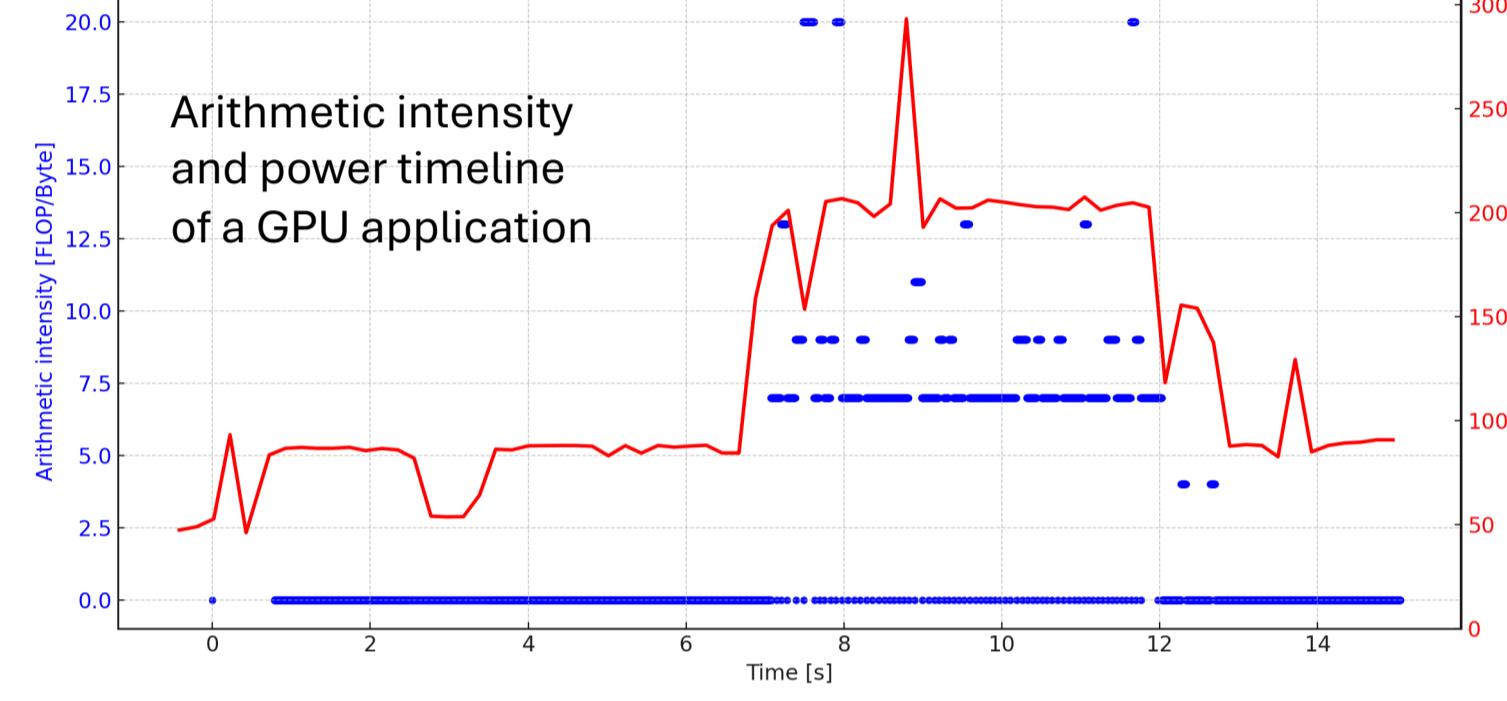
- Application energy consumption measurement
- Application dynamism & energy efficiency analysis
- Dynamic HW power knobs tuning for energy savings
- HW & SW power management co-design

Support for a wide range of architectures

- 86, IBM OpenPOWER, ARM
- Nvidia/AMD GPUs

Power monitoring systems

- CPU: Intel/AMD RAPL, IBM OCC, A64FX, HWMON (Nvidia Grace)
- GPU: NVML, ROCm
- System: ATOS HDEEM


Performance parameter tuning

- CPU frequency, GPU SM frequency, memory frequency, power limit, number of active CPU cores

SAMPLING-BASED GPU TUNING

CUDA energy efficiency runtime system

- Realtime monitoring of GPU utilization
 - CUPTI PM Sampling API is used to collect SM utilization & memory activity metrics
- Arithmetic intensity modeling
- Dynamic frequency tuning
 - On A100 SXM-4, 50ms between freq. configuration changes
- Special daemon tool for GPU frequency tuning

GPU	Switching latency range [ms]	Transition latency range [ms]
RTX Quadro 6000	0.55 - 350.4	0.09 - 335.8
A100 SXM-4	4.43 - 22.7	0.11 - 11.5
GH200	4.91 - 477.3	0.08 - 471.1

- LATEST tool**
- Evaluation of GPU frequency change latency
 - Utilization of synthetic, frequency-sensitive workload
 - Analysis of the frequency transition – for each freq. pair

MERIC: ENERGY EFFICIENCY SW SUITE FOR HPC

1.) Parallel application behavior analysis & optimization

AIRBUS customer **SCALABLE** code **ProLB** EuroHPC JU project

	no penalty	w. penalty
Runtime [%]	+0.5%	+4.1%
Energy [%]	-12.1%	-19.5%

ES GROUP **RENAULT**

European Impact: EuroHPC Centers of Excellence

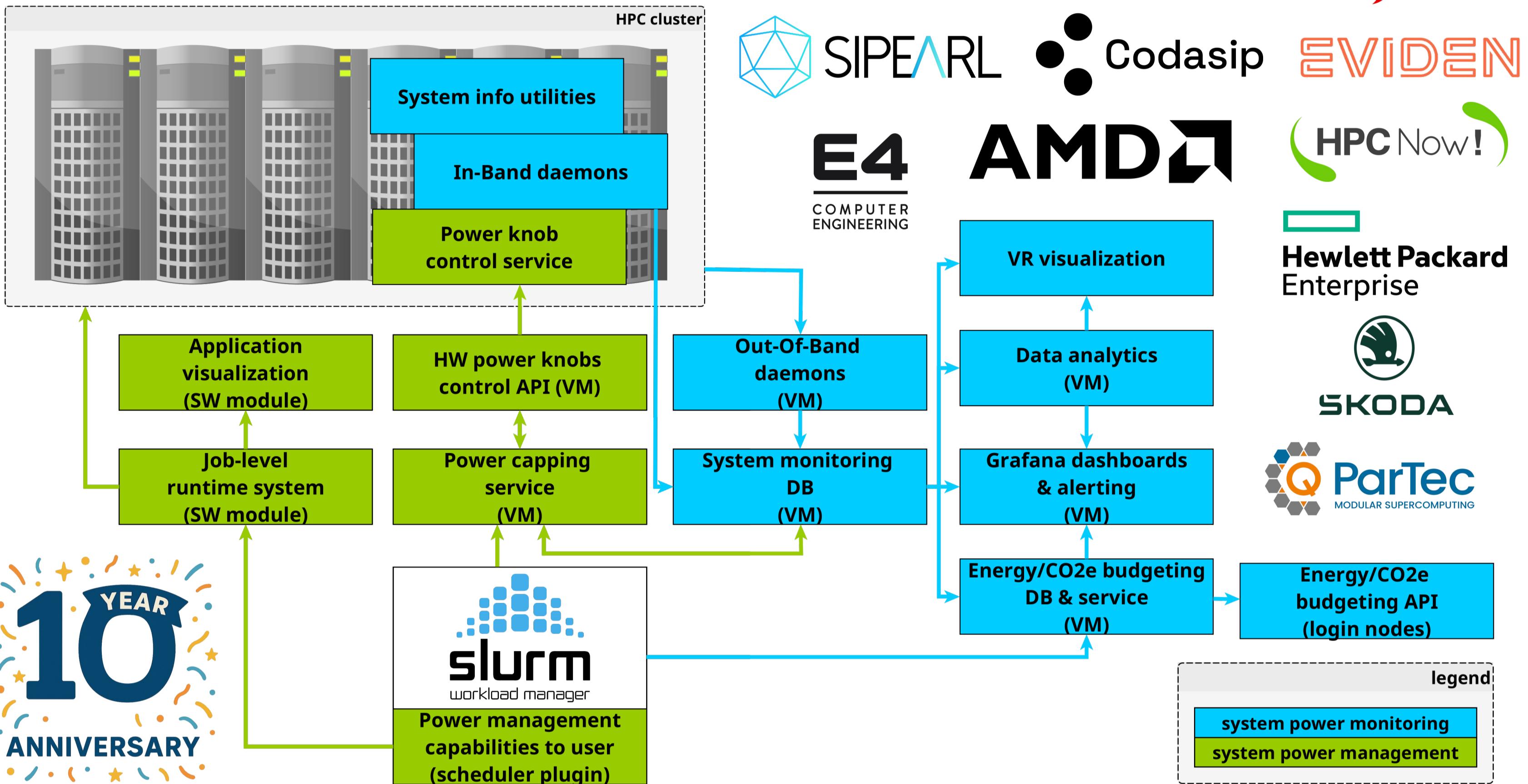
	QUANTUM ESPRESSO	YAMBO	SIESTA	BigDFT	FLEUR
AMD Zen2	2% 8%	6% 23%	15% 24%	17% 2%	3% 9%
AMD Zen3	12% 8%	15% 22%	24% 9%	12% 7%	12% 13%
NVIDIA A100	7% 10%	11% 7%	9% 3%	6% 9%	6% 4%

2.) HW&SW co-design for energy efficiency

dare

European RISC-V processor & accelerators

EUPLEX European Pilot for Exascale


European modular Exascale-ready pilot system

3.) Datacenter monitoring & optimization

KAROLINA

- Karolina system – power consumption ± 780 kW
- 103 kW power savings equals to 883 MWh / year
- 1MWh \sim 6000 CZK \Rightarrow 5.4 M CZK \sim 250 000 USD
- annual 315t CO2e reduction equals 12 600 trees

SOFTWARE STACK

MERIC DEVELOPMENT FUNDING

READEX
Runtime Exploitation of Application Dynamism for Energy-efficient exascale computing

e- INFRA CZ

SEANERGYSS ENERGY EFFICIENT EXASCALE

EUPLEX European Pilot for Exascale

pop

dare

SCALABLE

MAX
DRIVING THE EXASCALE TRANSITION

ENERGY EFFICIENCY SERVICES

- How much energy does my application consume? What is its carbon footprint?
- Which parts of the code are power hungry? Does it activate power capping?
- How energy efficient the code is?
- Which hardware platform is the most energy efficient for my code?
- Which parts of the application may give opportunity for energy savings?
- How much energy can be saved by static versus dynamic tuning of power management knobs without impacting application performance? And if the performance penalty is 5%, 10%, ... ?
- Does my hardware power/thermal management work as intended?
- When is the capping mechanism a performance-limiting factor?

VI-HPS

MAX
DRIVING THE EXASCALE TRANSITION

MAX3 CENTER OF EXCELLENCE

Code	Hardware platform used for energy efficiency evaluation							
	Instrumented for static tuning and compiled with MERIC	IT4I Barbora CPU partition Intel CascadeLake	EuroHPC Karolina CPU partition AMD Zen2	EuroHPC Karolina GPU partition		Intel Sapphire Rapids CPU w. DDR / HBM	IBM Power10 (S1022)	Fujitsu A64FX
Yambo	✓	✓	✓	✓	✓	✓✓	--	--
Quantum ESPRESSO	✓	✓	✓	✓	✓	✓✓	✓	--
Siesta	✓	✓	✓	✓	✓	✓✓	--	--
BigDFT	✓	✓	✓	✓	✓	✓✓	--	--
Fleur	✓	✓	✓	✓	✓	✓✓	✓	✓

THE MOST ENERGY EFFICIENT PLATFORMS FOR MAX CODES

SPR + HBM = 4.56	SPR + HBM = 1.33	SPR + HBM = 2.57	SPR + HBM = 0.28	SPR + HBM = 1.82 AMD Zen2
Efficiency (GFLOPs/W) of the most efficient HW with no runtime extension				

ENERGY EFFICIENCY EVALUATION FOR FLEUR CODE ON SELECTED PLATFORM

Hardware	Energy efficiency	Node energy consumption	Monitoring system	HW configuration	Runtime
AMD Zen2 (Rome)	1.78 GFLOPs/W	53.36 kJ	AMD RAPL + baseline	default	109 s (100%)
	1.82 GFLOPs/W	52.00 kJ (-3%)		CF 2.9 GHz	101%
	1.94 GFLOPs/W	48.81 kJ (-9%)		CF 2.1 GHz	107%
AMD Zen3 (Milan)	1.67 GFLOPs/W	56.96 kJ	AMD RAPL + baseline	default	93 s (100%)
	1.79 GFLOPs/W	53.05 kJ (-7%)		CF 2.7 GHz	101%
	1.91 GFLOPs/W	49.73 kJ (-13%)		CF 2.0 GHz	112%
Intel Cascade lake	1.00 GFLOPs/W	73.31 kJ	HDEEM	default	217 s (100%)
	1.04 GFLOPs/W	91.26 kJ (-4%)		CF 2.8 GHz, UCF 2.2 GHz	101%
	1.13 GFLOPs/W	84.51 kJ (-11%)		CF 1.9 GHz, UCF 1.8 GHz	123%
Intel Sapphire Rapids w. HBM	1.78 GFLOPs/W	71.83 kJ (-2%)	RAPL + baseline	default	82 s (100%)
	1.82 GFLOPs/W	71.83 kJ (-2%)		CF 3.1 GHz, UCF 1.8 GHz	101%
	1.82 GFLOPs/W	71.83 kJ (-2%)		CF 3.1 GHz, UCF 1.8 GHz	101%
Intel Sapphire Rapids w. DDR memory	1.43 GFLOPs/W	90.22 kJ	RAPL + baseline	default	100 s (100%)
	1.47 GFLOPs/W	88.48 J (-2%)		CF 2.9 GHz, UCF 2.0 GHz	101%
	1.54 GFLOPs/W	86.50 kJ (-4%)		CF 2.3 GHz, UCF 1.8 GHz	110%
Nvidia A100	--	180.6 kJ	AMD RAPL + NVML + baseline	default	111 s (