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Evaluation

Conclusion
l In DGEMM emulation using the Ozaki scheme, FP8TC provides competitive 

performance against FP16TC, and integer-based emulation of FP64 arithmetic 
achieves sufficient performance.

l FP64 emulation techniques such as the Ozaki scheme are a promising 
approach for utilizing AI hardware in scientific computing.

l However, data representations for AI are rapidly evolving. It remains unclear 
whether new formats such as NVFP4 (NVIDIA), HiFloat8 (Huawei), and FP8 
(UE8M0, no mantissa) are applicable to scientific workloads or FP64 emulation.

l Toward system integration for AI and scientific computing, researchers in AI, 
hardware, computer arithmetic (emulation technology), numerical computation, 
and applications must collaborate to design next-generation systems.

FP64 Arithmetic Emulation

l Environment: NVIDIA GeForce RTX 5060 Ti 
(Blackwell RTX architecture), 16GB, 94.74 
TFlops/s on FP8TC, 47.37 TFlops/s on 
FP16TCs, CUDA 12.9

l Problem setting: square matrices (m=n=k), 
elements in (1,10) (pseudo-uniform) –
Corresponds to GEMM counts in Tab. 1.

l Comparison:
• DGEMM-FP8TC: DGEMM using FP8TCs
• DGEMM-FP16TC: DGEMM using FP16TCs
• -FP64emu: using the FP64 arithmetic 

emulation in slicing and accumulation.
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l Principle: Decomposes a single high-
precision GEMM into a sum of error-free low-
precision GEMMs.

l Process:
• Step 1 (Slicing): Recursively splits input 

matrices element-wise to ensure 
subsequent computations are error-free.

• Step 2 (Computation): Calculates products 
of sliced matrices using low-precision 
GEMMs without rounding errors.

• Step 3 (Accumulation): Sums the partial 
results to produce the final GEMM output.

l Cost: It requires GEMMs for the square of 
the number of slices, which increases 
depending on the following factors: 
1. inner product dimension, 
2. dynamic range of the input values, 
3. precision gap between input and 

accumulation formats.

l Precision Gap & GEMM Count: The rate at 
which the required number of GEMMs increases 
with the inner dimension (k) is determined by 
the precision gap between the input format 
(Type2) and the accumulation format (Type3).

l Advantage of FP32 Accumulation: TCs with 
FP32 accumulation provide a large precision 
gap relative to FP8 input. This prevents the 
number of GEMMs from increasing, keeping it 
constant even as k grows.

l Comparison with FP16: In contrast, FP16 input 
has a smaller precision gap to FP32, causing 
the required GEMMs to rise significantly with k

l Throughput: Since FP8TC often deliver 2x that 
of FP16TC, FP8TCs are faster overall when the 
ratio of the required number of GEMMs is < 2.

l Context: AI hardware demands are surging, often sacrificing FP64 
performance for low-precision units like Tensor Cores (TCs), even on general-
purpose processors.
Ø E.g. Flops/s ratio of FP64 and FP16 on NVIDIA GPUs: 

A100 (2020) 1:16 -> H100 (2022) 1:30 -> B200 (2024) 1:125
l Problem: Many scientific computations rely on FP64, but as systems become 

AI-oriented, sustained performance improvements may become difficult.
l Solution: FP64 emulation technology is one approach to enabling FP64 

workloads on AI hardware.
l Ozaki Scheme [1]: It enabled FP64 matrix multiplication (DGEMM) using 

FP16TCs [2]. Subsequently, the use of INT8TCs [3] brought a dramatic 
performance improvement.

l Recent Trend: Focus on AI performance is shifting from INT8 to FP8 or lower 
precision FP, which earlier Ozaki scheme implementations did not explore.
Ø E.g. Throughput ratio of FP8 and INT8: GB200 1:1 -> GB300 30:1

l Objective: This work explores the feasibility of DGEMM by Ozaki scheme 
using FP8TCs and integer-based FP64 arithmetic emulation [4].

l Motivation: To examine the feasibility 
of execution on AI-oriented hardware 
lacking hardware FP64 units

l Role in Ozaki scheme: Slicing and 
accumulation processes use FP64 
operations including addition, 
multiplication, max, comparison (a>b), 
and exponent scaling (scalbn).

l Algorithm: Processes split mantissas 
using 32/64-bit integer arithmetic, 
analogous to pen-and-paper calculation.

l Accuracy: Ensures bitwise identical 
results to hardware FP64 with round-to-
nearest-even rounding.

l Optimization: Reduces overhead by 
omitting overflow/underflow handling 
irrelevant to the scheme.

Fig. 1  Schematic of Ozaki scheme.
Note that exponent is separately computed.

Fig. 3 Accuracy evaluation. Our implementations 
achieved error levels equivalent to or lower than 
standard FP64 GEMM.
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Fig. 4 DGEMM throughput. Flops/s is calculated 
as 2m3 Flops per sec. FP8TC outperforms 
FP16TC at large sizes (m ≥ 8192) due to 2x 
hardware throughput. FP64 arithmetic emulation 
showed minimal performance overhead.

Fig. 5 Execution time breakdown. Since 
GEMM calculations account for the majority 
of execution time, FP64 arithmetic emulation 
does not significantly impact performance.

Fig. 2 Part of FP64 multiplication 
code (mantissa part)

Tab. 1 Minimum number of GEMMs required for 
DGEMM using TCs with Ozaki scheme. Type2 is the 
input format and Type3 is the accumulation format.


