DGEMM using FP64 Arithmetic Emulation

and FP8 Tensor Cores with Ozaki Scheme

Daichi Mukunoki (Information Technology Center, Nagoya University)

4) N

e
Introduction Ozaki Scheme

Step 2: Computation
Mat-mulby = P ———

® Context: Al hardware demands are surging, often sacrificing FP64 ® Principle: Decomposes a single high- Tensor Cores {(Folt | Fol bt ol - o) \ o2,
performance for low-precision units like Tensor Cores (TCs), even on general- precision GEMM into a sum of error-free low- (FP16 or FP8-in,| FP16 . ¢ FP32 ||muliplicstons
pUrpoOSE Processors. precision GEMMs. FP32-comp o EP8 ||| ||~ lces9| || qunzgogn
> E.g. Flops/s ratio of FP64 and FP16 on NVIDIA GPUs: ® Process: | o FP32-out) SVl -4

A100 (2020) 1:16 -> H100 (2022) 1:30 -> B200 (2024) 1:125 + Step 1 (Slicing): Recursively spiits input /,,5 =N 1 \

® Problem: Many scientific computations rely on FP64, but as systems become matrices element-W|s§ o ensure adl== i-{_ i

_ . _ - subsequent computations are error-free. FP16 |. 1 P16
Al-oriented, sustained performance improvements may become difficult. . Step 2 (Computation): Calculates products Q'*“f or EP8 \ YR =

® Solution: FP64 emulation technology is one approach to enabling FP64 of sliced matrices using low-precision o{" a0 | ;. EE—
workloads on Al hardware. GEMMs without rounding errors. { ’

® Ozaki Scheme [1]: It enabled FP64 matrix multiplication (DGEMM) using - Step 3 (Accumulation): Sums the partial FP64 2
FP16TCs [2]. Subsequently, the use of INT8TCs [3] brought a dramatic results to produce the final GEMM output. \L i
performance improvement. ® Cost: It requires GEMMs for the square of input (\ \ %Q ., |

® Recent Trend: Focus on Al performance is shifting from INT8 to FP8 or lower the number of slices, which increases FP&I"/‘& FP64 /;
precision FP, which earlier Ozaki scheme implementations did not explore. depending on the following factors: Step 1: Splitting e Step 3: Summation

input output

> E.g. Throughput ratio of FP8 and INT8: GB200 1:1 -> GB300 30:1 1. inner product dimension,

e Objective: This work explores the feasibility of DGEMM by Ozaki scheme 2. dynamic range of the input values, Fig. 1 Schematic of Ozaki scheme.

. 3. precision gap between input and :
using FP8TCs and integer-based FP64 arithmetic emulation [4]. precist g P betw npu Note that exponent is separately computed.
accumulation formats.

- AN /
N

|| / | | |
Using FP16TC vs. FP8TC FP64 Arithmetic Emulation
® Precision Gap & GEMM Count: The rate at Tab. 1 Minimum number of GEMMs required for ® Motivation: To examine the feasibility
. : : DGEMM using TCs with Ozaki scheme. Type2 is the - - fypeder siruet
which the required number of GEMMs increases | 9 . P of execution on Al-oriented hardware
.) _ _ _ _ input format and Type3 is the accumulation format. . . b ouinesnd;
with the inner dimension (k) is determined by lacking hardware FP64 units _device__ inline uintizxs mul_mantissa (uinth_t 3, uintsé_t by {
isi i Typez | FPl6 FP16 FP8 = FP8 = FP6 EP6 ® Role in Ozaki scheme: Slicing and meres e e
the precision gap between _the input format (EAM3) (E4M3) (E3M2) (E3M2) _ ' 9 e I v eerer,
(Type2) and the accumulation format (Type3). Type3 | FP32 FP16 FP32 FPl6 FP32 FPI6 accumulation processes use FP64 wints2_t b_high = b > 32;
® Advantage of FP32 Accumulation: TCs with k=8| 25 121 121 121 19 19 operations including addition, Cintei s ot oimiar oo on + nien,
. . . 1 2 1 121 1 1 1 T . . uint64_t p10 = (uint64_t)a_high * b_low;
FP32 accumulation provide a large precision 32 32 132 121 122 132 132 multiplication, max, comparison (a>b), ineod e b1 = (uineod o anigh o bohieh;
gap relative to FP8 input. This prevents the 64 | 36 324 121 324 196 324 and exponent scaling (scalbn). STt mddle = B0 L0 < g
. . uint64_t carry = (mi e < po1) ? (TULL << 32) : ©;
number of GEMMs from increasing, keeping it 1281 36 324 121 324 196 324 ® Algorithm: Processes split mantissas intsi_s Ton_result = 9o + ((niddle & oxFFEFFFE) <€ 22
2o %0 T o 72 o e using 32/64-bit integer arithmetic ary - Gonreait o 10 - |
Constant even aS k grOWS. 512 49 729 121 729 196 729 g g L) . uint64_t high_result = p11 + (middle >> 32) + carry;
® Comparison with FP16: In contrast, FP16 input 1024 | 49 2809 121 2809 196 2809 analogous to pen-and-paper calculation. vintszxh result;
. . . . result.parts[0] = low_result & OxFFFFFFFF;
has a smaller precision gap to FP32, causing prootl I e A ® Accuracy: Ensures bitwise identical e e
the required GEMMs to rise significantly with & 8192 | 81 - 121 _ 196 _ results to hardware FP64 with round-to- etorn reoutt, e
® Throughput: Since FP8TC often deliver 2x that 16384 | 81 - 121 - 1% - nearest-even rounding. }
of FP16TC, FP8TCs are faster overall when the 22222 121 - 121 - 122 - ® Optimization: Reduces overhead by Fia. 2 Part of FP64 multioficat
) . : - - - " : ig. art o multiplication
ratio of the required number of GEMMs is < 2. 131072 | 196 _ 196 _ 196 _ omitting overflow/underflow handling co%e (mantissa part) P
262144 | 196 = 196 - 196 - irrelevant to the scheme. P

o NG /
4 N

= Accuracy compared to MPFR 128-bit (m=n=128) DGEMM Throughput DGEMM-FP8TC-FP64emu DGEMM-FP16TC-FP64emu
E I t Te-9 ¢ 6 T ; ; ; ; > 0.8 ' ' ! ' ! ! 100 100
vdiuation ; ; | | | | | ; DGEMM-FP16TC —@— ; |-
1610 b — T T I] 0.7 PGEMM-FP16TC-FP64emu ---@-- o Z
. : = f | | f ; 3 | : - -FP64emu ---%-- f
® Environment: NVIDIA GeForce RTX 5060 Ti Sletly TN 06| DGEMM (cuBLAS) —— ¥ |1 _ i
> R 3 3 : : : :] : : : § : 3 =T | | - i e R ¢ -
(Blackwell RTX architecture), 16GB, 94.74 F1e-12 o 3 % f 1 2 2
TFlops/s on FP8TC, 47.37 TFlops/s on Ele-183 3 £ SaU i B | L1 B
= P
FP16TCS, CUDA 129 SU 8‘ 20 VAL | - 20 U AL | _
= I
i " i == = 7_
® Problem §ett|ng. square matr.lces (m=n=k), , § L ; § | B
elements in (1,10) (pseudo-uniform) — N3 25 S 52 5
: 5 3 8 & 5 3 8 &
Corresponds to GEMM counts in Tab. 1. S S
° Comparison: Problem Size (K) ProbSI(Ieir;e'so:ze (m=n=Kk) Probsl‘(lair;ezze (m=n=Kk)
* DGEMM-FP8TC: DGEMM using FP8TCs DGEMM-FP16TC —@— GENM == GENM ==
- DGEMM-FP16TC: DGEMM using FP16TCs D T epamd 9 Problem Size (m=n=k) Ageum ol —
- -FP64emu: using the FP64 arithmetic POENM GEMIM (cuBLAS) > Fig. 4 DGEMM throughput. Flops/s is calculated
L Qi : 3 Flops per sec. FP8TC outperforms Fig. 5 Execution time breakdown. Since
emulation in slicing and accumulation. . . | | as 2m- lops p P 9
9 Fig. 3 Accuracy evaluation. Our implementations FP16TC at large sizes (m > 8192) due to 2x GEMM calculations account for the majority
achieved error levels equivalent to or lower than hardware throughput. FP64 arithmetic emulation of execution time, FP64 arithmetic emulation
standard FP64 GEMM. showed minimal performance overhead. does not significantly impact performance.

J

eferences \

1. K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, “Error-free transformations of matrix multiplication by using
fast routines of matrix multiplication and its applications”, Numer. Algorithms 59, 1, 2012.

o

/Conclusion A /R

® |n DGEMM emulation using the Ozaki scheme, FP8TC provides competitive

perf.ormance -ag.:jainst FP16TC, and integer-based emulation of FP64 arithmetic 2. D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, "DGEMM using Tensor Cores, and Its Accurate and
achieves suff.|C|ent per.formance. | N Reproducible Versions", Proc. ISC 2020.
® FP64 emulation techniques such as the Ozaki scheme are a promising 3. H. Ootomo, K. Ozaki, R. Yokota, “DGEMM on integer matrix multiplication unit”, The International

approach for utilizing Al hardware in scientific computing. Journal of High Performance Computing Applications, 2024.

® However, data representations for Al are rapidly evolving. It remains unclear 4. D. Mukunoki, DGEMM using FP64 Arithmetic Emulation and FP8 Tensor Cores with Ozaki Scheme,
whether new formats such as NVFP4 (NVIDIA), HiFloat8 (Huawei), and FP8 Proc. SCA/HPCAsia 2026 WS - ExHET’26. 2026

(UEBMO, no mantissa) are applicable to scientific workloads or FP64 emulation.
® Toward system integration for Al and scientific computing, researchers in Al,
hardware, computer arithmetic (emulation technology), numerical computation, ACknOWIngement

and applications must collaborate to design next-generation systems. j

SCA/HPCAsia 2026, Osaka, Jan. 26-29, 2026.

Qﬂs work was supported by JSPS KAKENHI Grant Number JP25K24387. /

