
DGEMM using FP64 Arithmetic Emulation
and FP8 Tensor Cores with Ozaki Scheme

Daichi Mukunoki (Information Technology Center, Nagoya University)

Introduction

0

20

40

60

80

100

2048
4096
8192
16384

SliceA
SliceB
GEMM
Accum
Other

%

Problem size (m=n=k)

DGEMM-FP8TC-FP64emu

0

20

40

60

80

100

2048
4096
8192
16384

SliceA
SliceB
GEMM
Accum
Other

%

Problem size (m=n=k)

DGEMM-FP16TC-FP64emu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

128
256

512
1024

2048
4096

8192
16384

DGEMM-FP16TC
DGEMM-FP16TC-FP64emu

DGEMM-FP8TC
DGEMM-FP8TC-FP64emu

DGEMM (cuBLAS)

TF
lo

ps
/s

 in
 F

P6
4

Problem Size (m=n=k)

DGEMM Throughput

Ozaki Scheme [1]

Using FP16TC vs. FP8TC

References
1. K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, “Error-free transformations of matrix multiplication by using

fast routines of matrix multiplication and its applications”, Numer. Algorithms 59, 1, 2012.
2. D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, "DGEMM using Tensor Cores, and Its Accurate and

Reproducible Versions", Proc. ISC 2020.
3. H. Ootomo, K. Ozaki, R. Yokota, “DGEMM on integer matrix multiplication unit”, The International

Journal of High Performance Computing Applications, 2024.
4. D. Mukunoki, DGEMM using FP64 Arithmetic Emulation and FP8 Tensor Cores with Ozaki Scheme,

Proc. SCA/HPCAsia 2026 WS - ExHET’26, 2026.

Acknowledgement
This work was supported by JSPS KAKENHI Grant Number JP25K24387.

Evaluation

Conclusion
l In DGEMM emulation using the Ozaki scheme, FP8TC provides competitive

performance against FP16TC, and integer-based emulation of FP64 arithmetic
achieves sufficient performance.

l FP64 emulation techniques such as the Ozaki scheme are a promising
approach for utilizing AI hardware in scientific computing.

l However, data representations for AI are rapidly evolving. It remains unclear
whether new formats such as NVFP4 (NVIDIA), HiFloat8 (Huawei), and FP8
(UE8M0, no mantissa) are applicable to scientific workloads or FP64 emulation.

l Toward system integration for AI and scientific computing, researchers in AI,
hardware, computer arithmetic (emulation technology), numerical computation,
and applications must collaborate to design next-generation systems.

FP64 Arithmetic Emulation

l Environment: NVIDIA GeForce RTX 5060 Ti
(Blackwell RTX architecture), 16GB, 94.74
TFlops/s on FP8TC, 47.37 TFlops/s on
FP16TCs, CUDA 12.9

l Problem setting: square matrices (m=n=k),
elements in (1,10) (pseudo-uniform) –
Corresponds to GEMM counts in Tab. 1.

l Comparison:
• DGEMM-FP8TC: DGEMM using FP8TCs
• DGEMM-FP16TC: DGEMM using FP16TCs
• -FP64emu: using the FP64 arithmetic

emulation in slicing and accumulation.

FP64

FP64

FP16
or FP8

FP16
or FP8 FP32

FP64

FP16
or FP8

FP16
or FP8

FP32

Mat-mul by
Tensor Cores
(FP16 or FP8-in,
FP32-comp
FP32-out)

SCA/HPCAsia 2026, Osaka, Jan. 26-29, 2026.

l Principle: Decomposes a single high-
precision GEMM into a sum of error-free low-
precision GEMMs.

l Process:
• Step 1 (Slicing): Recursively splits input

matrices element-wise to ensure
subsequent computations are error-free.

• Step 2 (Computation): Calculates products
of sliced matrices using low-precision
GEMMs without rounding errors.

• Step 3 (Accumulation): Sums the partial
results to produce the final GEMM output.

l Cost: It requires GEMMs for the square of
the number of slices, which increases
depending on the following factors:
1. inner product dimension,
2. dynamic range of the input values,
3. precision gap between input and

accumulation formats.

l Precision Gap & GEMM Count: The rate at
which the required number of GEMMs increases
with the inner dimension (k) is determined by
the precision gap between the input format
(Type2) and the accumulation format (Type3).

l Advantage of FP32 Accumulation: TCs with
FP32 accumulation provide a large precision
gap relative to FP8 input. This prevents the
number of GEMMs from increasing, keeping it
constant even as k grows.

l Comparison with FP16: In contrast, FP16 input
has a smaller precision gap to FP32, causing
the required GEMMs to rise significantly with k

l Throughput: Since FP8TC often deliver 2x that
of FP16TC, FP8TCs are faster overall when the
ratio of the required number of GEMMs is < 2.

l Context: AI hardware demands are surging, often sacrificing FP64
performance for low-precision units like Tensor Cores (TCs), even on general-
purpose processors.
Ø E.g. Flops/s ratio of FP64 and FP16 on NVIDIA GPUs:

A100 (2020) 1:16 -> H100 (2022) 1:30 -> B200 (2024) 1:125
l Problem: Many scientific computations rely on FP64, but as systems become

AI-oriented, sustained performance improvements may become difficult.
l Solution: FP64 emulation technology is one approach to enabling FP64

workloads on AI hardware.
l Ozaki Scheme [1]: It enabled FP64 matrix multiplication (DGEMM) using

FP16TCs [2]. Subsequently, the use of INT8TCs [3] brought a dramatic
performance improvement.

l Recent Trend: Focus on AI performance is shifting from INT8 to FP8 or lower
precision FP, which earlier Ozaki scheme implementations did not explore.
Ø E.g. Throughput ratio of FP8 and INT8: GB200 1:1 -> GB300 30:1

l Objective: This work explores the feasibility of DGEMM by Ozaki scheme
using FP8TCs and integer-based FP64 arithmetic emulation [4].

l Motivation: To examine the feasibility
of execution on AI-oriented hardware
lacking hardware FP64 units

l Role in Ozaki scheme: Slicing and
accumulation processes use FP64
operations including addition,
multiplication, max, comparison (a>b),
and exponent scaling (scalbn).

l Algorithm: Processes split mantissas
using 32/64-bit integer arithmetic,
analogous to pen-and-paper calculation.

l Accuracy: Ensures bitwise identical
results to hardware FP64 with round-to-
nearest-even rounding.

l Optimization: Reduces overhead by
omitting overflow/underflow handling
irrelevant to the scheme.

Fig. 1 Schematic of Ozaki scheme.
Note that exponent is separately computed.

Fig. 3 Accuracy evaluation. Our implementations
achieved error levels equivalent to or lower than
standard FP64 GEMM.

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

1e-9

128
256

512
1024

2048
4096

8192
16384

DGEMM-FP16TC
DGEMM-FP16TC-FP64emu

DGEMM-FP8TC
DGEMM-FP8TC-FP64emu

DGEMM (cuBLAS)

M
ax

im
um

 re
la

tiv
e

er
ro

r

Problem Size (k)

Accuracy compared to MPFR 128-bit (m=n=128)

Fig. 4 DGEMM throughput. Flops/s is calculated
as 2m3 Flops per sec. FP8TC outperforms
FP16TC at large sizes (m ≥ 8192) due to 2x
hardware throughput. FP64 arithmetic emulation
showed minimal performance overhead.

Fig. 5 Execution time breakdown. Since
GEMM calculations account for the majority
of execution time, FP64 arithmetic emulation
does not significantly impact performance.

Fig. 2 Part of FP64 multiplication
code (mantissa part)

Tab. 1 Minimum number of GEMMs required for
DGEMM using TCs with Ozaki scheme. Type2 is the
input format and Type3 is the accumulation format.

