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Global precipitation nowcasting with ConvLSTM and adversarial training
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1. Al-based global precipitation nowcasting
Adversarial training
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Ground truth Adversarial training:
GSMaP MVK updating the discriminators
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Connected ConvLSTMS (8 or 16 units are used)
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2. Training loss

 Loss _generator = Loss_pixelwise
+ Loss non local +a * Loss adversarial

« Loss pixelwise = Y i(Huber(xi, yi) * wi)

 Loss adversarial = BinaryCrossEntropy(D spatial(x, 0.8))
+ BinaryCrossEntropy(D_temporal(x, 0.8))

e L oss non local:
e parameters:
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« Mean and higher-order moments: For each time step, (xP)?,p = 1,2,4,6,8,10
1

« Sharpness: For each time step, ((Vax — W)P)E,p =2,4,q =2,4,6,8
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« To avoid unrealistic pattern: For time-averaged value, ((qu — W)P)E,p =2,4,q =2,46,8
1

« To avoid unrealistic pattern: For each time step, ((xvqx — qux)P)E,p =2,4,q =2,4,6,8
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4. Comparison with conventional nowcasting
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b. Verification scores for January-December 2024

GL 2024010200 2024123 123 GL 2024010200 2024123 123 GL 2024010200 2024123 123

1.0 ' 1.0 ' 1.0 :
N Olrnm/h g 10rnm/h N 50rnm/h
I : s
» £ 08 - g 08- - g 08- -
T - o o
; i 0_5_- - : 0.6- = u: 0.6 ~
QO o (o] 7 o)
O * = -
< o | ) | ) |
’a 0.4- ’8" 0.4- E 0.4- -
% 02 % 02 % 02 :
£ g £
0.0 I I I I I 0.0 - I I I L I 0.0 I I I I I
0 2 4 6 8 10 12 0 2 4 6 B8 10 12 o 2 4 6 8 10 12
Forecast time (h) Forecast time (h) Forecast time (h)
Threat scores with respect to GSMaP MVKv8
6. Summary

* Deep learning-based global precipitation nowcasting outperforms
conventional tracking-based nowcasting for most cases

« GAN-based training helped reproduce small-scale rain areas
e Further improvements are needed for the shortest-range forecasts
« Large-scale distributed training framework is needed in the future
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