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1. AI-based global precipitation nowcasting
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Adversarial training:
updating the discriminators
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2. Training loss
• Loss_generator = Loss_pixelwise 

                                + Loss_non_local +α * Loss_adversarial
• Loss_pixelwise = Σi(Huber(xi, yi) * wi)
• Loss_adversarial = BinaryCrossEntropy(D_spatial(x, 0.8))

                            + BinaryCrossEntropy(D_temporal(x, 0.8))
• Loss_non_local:

• parameters:
• Mean and higher-order moments: For each time step, 𝑥𝑥𝑝𝑝

1
𝑝𝑝, 𝑝𝑝 = 1,2,4,6,8,10

• Sharpness: For each time step, ∇𝑞𝑞𝑥𝑥 − ∇𝑞𝑞𝑥𝑥 𝑝𝑝
1
𝑝𝑝, 𝑝𝑝 = 2,4, 𝑞𝑞 = 2,4,6,8

• To avoid unrealistic pattern: For time-averaged value, ∇𝑞𝑞𝑥𝑥 − ∇𝑞𝑞𝑥𝑥 𝑝𝑝
1
𝑝𝑝, 𝑝𝑝 = 2,4, 𝑞𝑞 = 2,4,6,8

• To avoid unrealistic pattern: For each time step, 𝑥𝑥∇𝑞𝑞𝑥𝑥 − 𝑥𝑥∇𝑞𝑞𝑥𝑥 𝑝𝑝
1
𝑝𝑝, 𝑝𝑝 = 2,4, 𝑞𝑞 = 2,4,6,8

• Loss for each resolution, each parameter 𝑋𝑋: 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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4. Comparison with conventional nowcasting
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5. Verification scores for January-December 2024

Threat scores with respect to GSMaP MVKv8

3. Data

6. Summary
• Deep learning-based global precipitation nowcasting outperforms 

conventional tracking-based nowcasting for most cases
• GAN-based training helped reproduce small-scale rain areas
• Further improvements are needed for the shortest-range forecasts
• Large-scale distributed training framework is needed in the future

0.1 mm/h 1.0 mm/h 5.0 mm/h

Ac
cu

ra
te
→

1.6° mesh
225 × 75

0.8° mesh
450 × 150

0.4° mesh
900 × 300

0.2° mesh
1800 × 600

0.1° mesh
3600 × 1200

Progressive training

• Input: hourly, past 24 h
• GSMaP 

Near-Real-Time (NRT) v8

• Truth: hourly, 12-h lead
• GSMaP Standard (MVK) v8

• Training:
2022/01/01 - 2023/12/31

• ~2 weeks on A100 x 2

• Validation:
2021/12/06

• Test:
2024/01/01 - 2024/01/31

• ~5 seconds/12-h-prediction on A100 x 1
• ~10 seconds for I/O

GSMaP RIKEN AI Nowcast website
https://weather.riken.jp/en/gsmap_rain/
gsmap_rain.html

World Meteorological Organization 
Intercomparison project
“AI for Nowcasting Pilot Project”
https://community.wmo.int/en/meetings/
wmo-artificial-intelligence-nowcasting-
pilot-project-ainpp-workshop
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