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Abstract:

Data-driven models (DDMs) are mathematical, statistical, or computational
models built upon data, where patterns, relationships, or predictions are derived
directly from the available information rather than through explicit instructions or
rules defined by humans. These models are constructed by analysing large
volumes of data to identify patterns, correlations, trends, and other statistical
relationships. In areas such as numerical weather predictions (NWP), these DDMs
are becoming increasingly popular with an aim to replace numerical models
based on reanalysis data. Data assimilation (DA) is a process which combines
observations from various sources with numerical models to improve the
accuracy of predictions or simulations of a system's behaviour.

This presentation focuses on the application of DA methodologies in enhancing
the precision and efficiency of DDM generation within computation models
characterised by inherent observation error. The aim is to demonstrate the pivotal
role that DA techniques can play in refining and optimising the process of DDM
generation, thereby augmenting the accuracy and reliability of predictive models
despite the presence of observational uncertainties.

Methodology:

Looping Algorithm: In figure 1, we outline our proposed algorithm to improve
data-drive model generation using data assimilation. In this algorithm, we start
with an imperfect model. This model is then used with data assimilation on
perfect model observations. Using the analysis trajectory, we can generate an
LSTM (LSTM gen 0) to be a better estimate of the system than the imperfect
model. If we then repeat this step, by using the new LSTM instead of the
numerical model, this produces a new LSTM (LSTM gen 1) which is, again, a more
accurate representation of the perfect system. This algorithm can be looped n
times (here we use n=10) to produce a machine learning model that is closer to
the perfect system.
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Figure 1. This figure shows the cycling algorithm. Adopted from Fig.1 of Goodliff and Miyoshi (2025).

L Start: Data Assimilation Step

Lorenz 63 Systems:
1) Traditional Lorenz 63 Equations
2) “Coupled Chaotic” Lorenz 63 Model
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Square-Root Extended Kalman Filter (SR-EKF):

SR-EKF is a data assimilation method that recursively estimates the state of a
nonlinear system by optimally combining model forecasts and observations while
propagating the square root of the error covariance to preserve numerical
stability. The prediction equations are:

X1f< = M1 (Xg-1) P1£ = Fk—lplg—1Flr£—1 +Q,
And the update equations are:
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Long-Short Term Memory (LSTM):

LSTMs are a type of RNN capable of learning order dependence in sequence
prediction problems. Using the past N data points in a time series, we can predict
the next point.
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Results:

Figure 2 illustrates the model error (RMSE) of our data-driven models (LSTMs)
forecasts (1-4dt) compared to the imperfect model. As expected, the imperfect
model exhibits the highest RMSE, indicating the lowest accuracy, while the LSTMs
models become more accurate per iteration until convergence.
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Figure 2. This figure shows the model error (RMSE) of our cycling algorithm on the Lorenz 63 model for a
forecast of 1-4dt. As we cycle through the algorithm, each iteration improves the RMSE over the imperfect
model. Adopted from Fig.2 of Goodliff and Miyoshi (2025).

Figure 3 shows the model error (RMSE) in space for the imperfect model, the
first-generation LSTM-0, and the optimised LSTM. Here, we show that our
optimised LSTM has a lower higher overall accuracy at all forecast lengths but

struggles around the boundaries of the attractor at 4dt.
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Figure 3. This plot illustrates the spatial distribution of model errors for 1-4dt forecasts. Adopted from Fig.4
of Goodliff and Miyoshi (2025).

Figure 4 shows how our imperfect model, initial LSTM (LSTMO) and optimal LSTM
(LSTM7) change with varying levels of model error. This looks at

B ={2.5,2.8,3.1, 3.4}, the imperfect model changes dramatically with higher
model error, while the LSTMs stay relatively stable.
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Figure 4. . This figure displays the model error (RMSE) for the imperfect
model, initial LSTM (LSTMO) and the optimised LSTM (LSTM7).
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