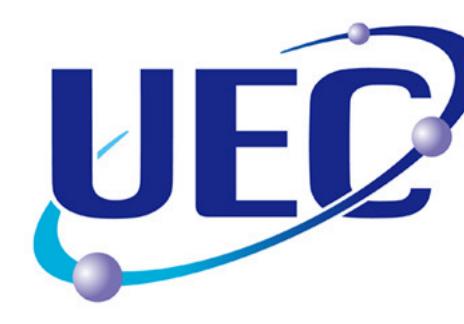
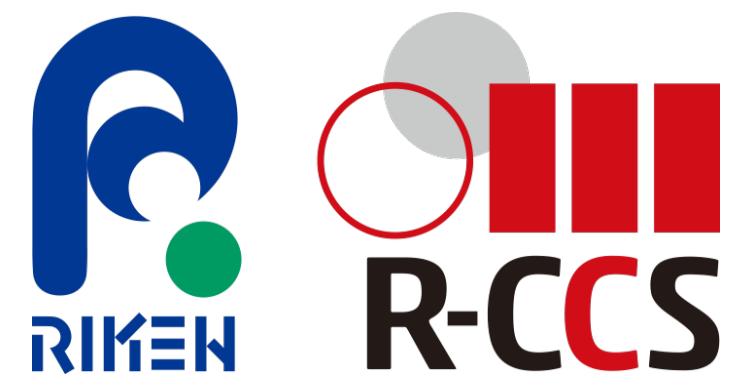


# Rethinking the Bit Length of Post-Training Quantization for LLM Accuracy and Hardware Efficiency



Yanchen Li<sup>1</sup>, Chenlin Shi<sup>1&2</sup>, Shinobu Miwa<sup>2</sup>, Kentaro Sano<sup>1</sup>

<sup>1</sup>RIKEN Center for Computational Science, <sup>2</sup>The University of Electro-Communications

## III Introduction

### Background

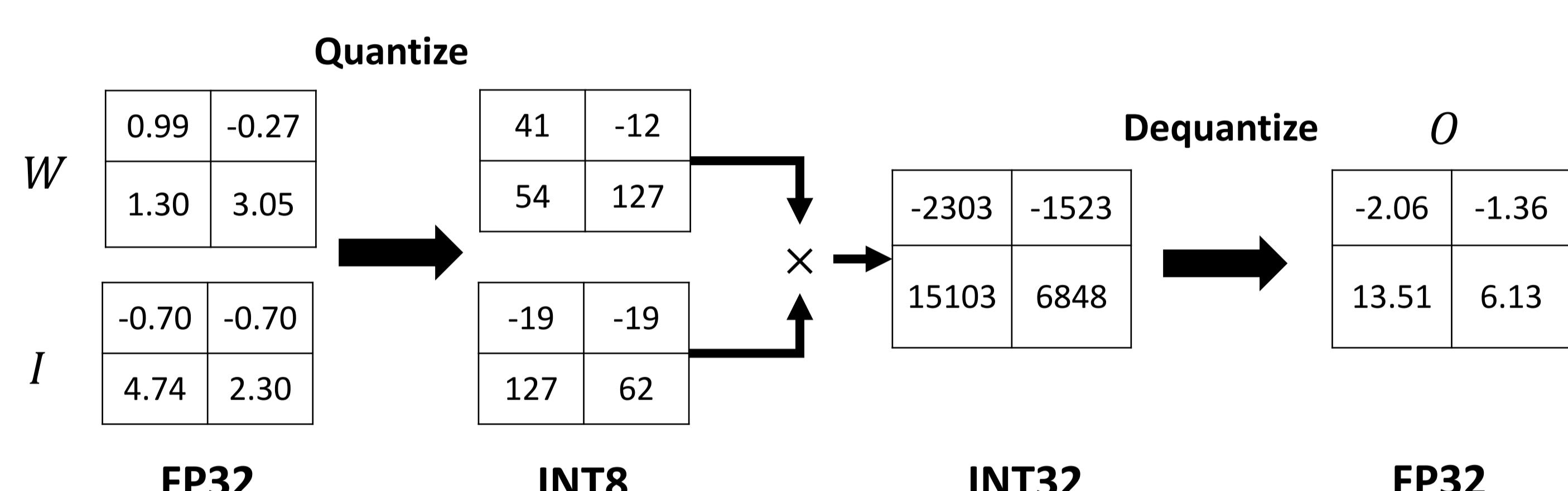
- Large language models (LLMs) consume too much memory and energy for inference
- Quantization [1] compresses model weights and activations from high precisions (e.g., FP32) to lower precisions (e.g., INT8, FP8)

### Problem

- Standard 2-multiple bit lengths are often too coarse, providing a poor trade-off for preserving model accuracy.

### Expected Result

- Provide fine-grain quantization precisions for higher LLM inference accuracy
- Achieve lower energy consumption or smaller area for the inference on hardware

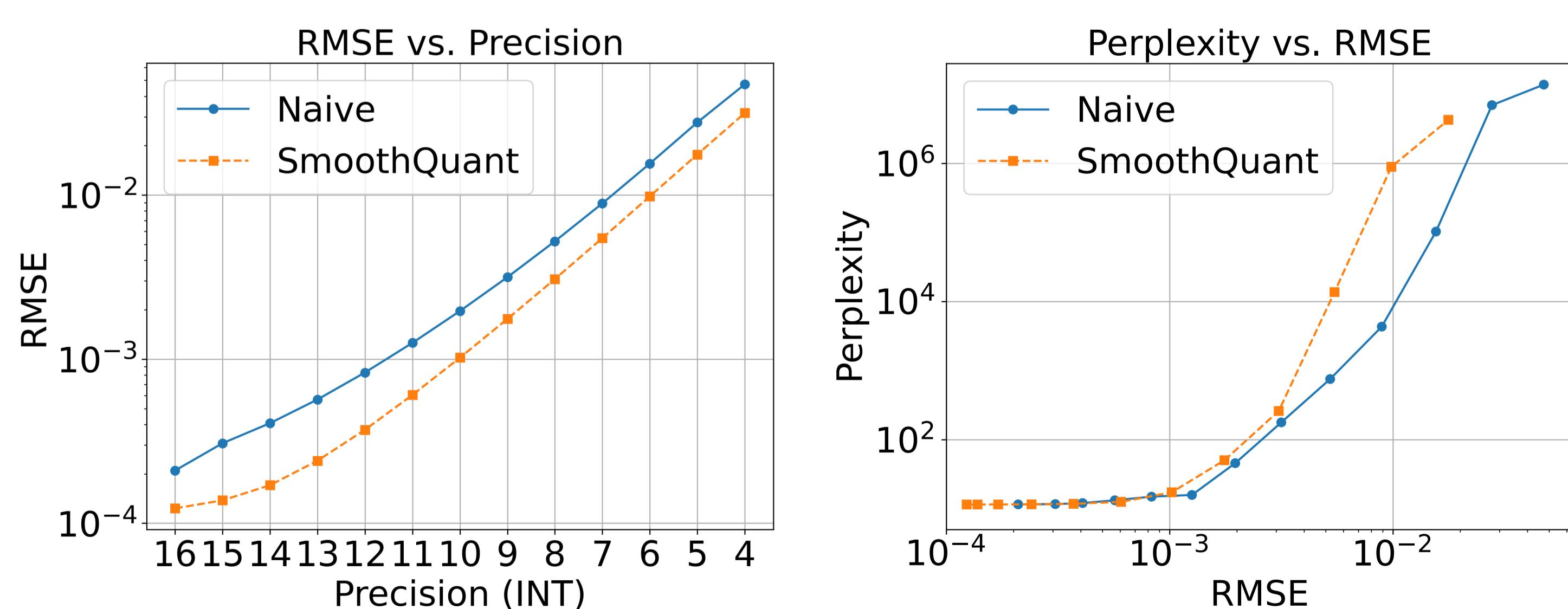


## III Inference Accuracy

- Eight-bit precision (INT8) is conventionally considered sufficient to preserve the inference accuracy of quantized LLMs. However, our experiments challenge this assumption.

### Experiment Settings

- Large language model: Llama-3.2-8B [2]
- Task: WikiText2 [3]
- Quantization methods:
  - Naïve:  $X^q = \left\lfloor \frac{X}{\Delta} \right\rfloor, \Delta = \frac{\max(|X|)}{2^{N-1}-1}$
  - SmoothQuant [4]: Before applying naïve quantization, smooths the weights and activation by  $X_s = X_{\text{diag}}(s)^{-s}, W_s = \text{diag}(s)W$
- Metrics:
  - Root mean square error (RMSE) for quantization error
  - Perplexity (cross-entropy loss) for inference accuracy



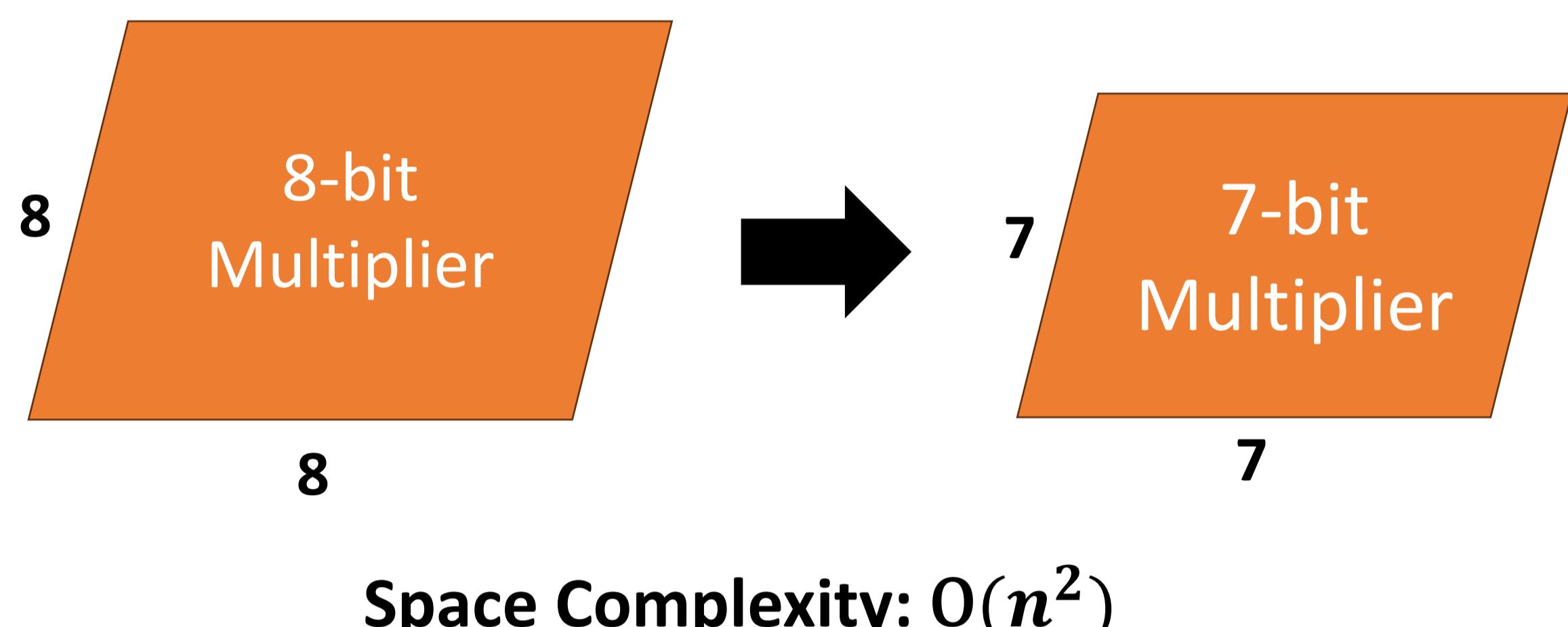
## Contact

Yanchen Li  
RIKEN Center for Computational Science  
Kobe City, Hyogo, Japan  
yanchen.li@riken.jp

## III Hardware Implementation

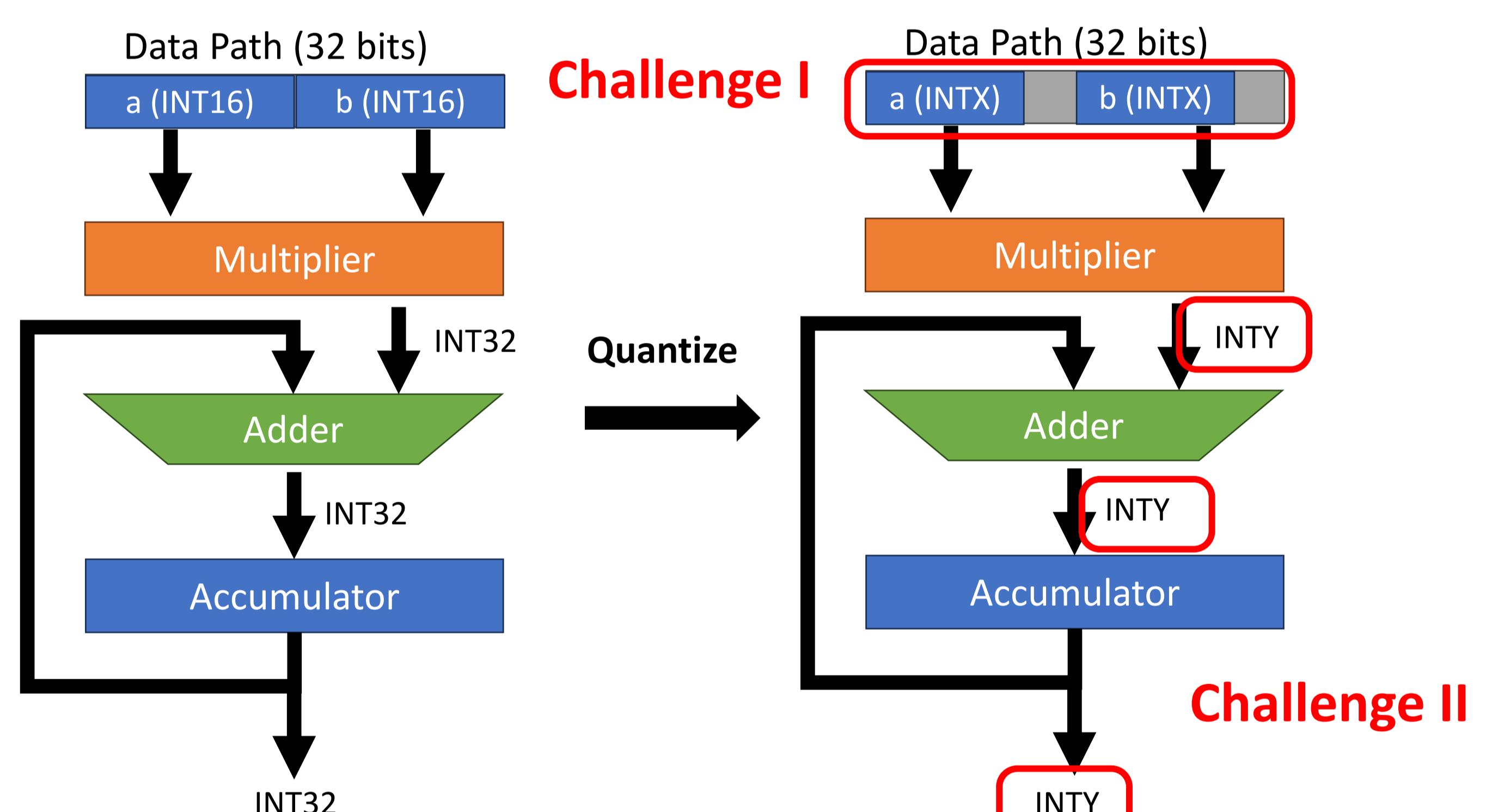
### Objectives

- Save energy and reduce area
  - Simplifying the multipliers in fused multiply-add (FMA)
  - Reducing data transfer



### Challenges

- (I) A data interface mismatch creates a bottleneck.
  - The bandwidth of the data path is wasted without optimization
- (II) The accumulator precision requires a careful trade-off



### Potential Solutions

- Design new memory interfaces according to the input lengths
- Optimized batched data transfer strategies
- Select the accumulation precision by analyzing trade-off between accumulator precision, FMA precision, and overall model accuracy

## III Conclusion

- Our experimental results indicate that standard INT8 precision is insufficient to preserve LLM inference accuracy.
- We show that supporting fine-grained, irregular bit lengths to maintain high LLM accuracy.
- However, implementing these irregular bit lengths efficiently in hardware presents significant challenges, which are left as our future studies.

## References

- Yao, Zhewei, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. "Zeroquant: Efficient and affordable post-training quantization for large-scale transformers." Advances in neural information processing systems 35 (2022): 27168-27183.
- Grattafiori, Aaron, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).
- Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher. "Pointer sentinel mixture models." arXiv preprint arXiv:1609.07843 (2016).
- Xiao, Guangxuan, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. "Smoothquant: Accurate and efficient post-training quantization for large language models." In International conference on machine learning, pp. 38087-38099. PMLR, 2023.