
Introduction

Yanchen Li1, Chenlin Shi1&2, Shinobu Miwa2, Kentaro Sano1
1RIKEN Center for Computational Science, 2The University of Electro-Communications

Rethinking the Bit Length of Post-Training 
Quantization  for LLM Accuracy and 
Hardware Efficiency

Yanchen Li
RIKEN Center for Computational Science
Kobe City, Hyoko, Japan
yanchen.li@riken.jp

Contact
1. Yao, Zhewei, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. "Zeroquant: Efficient and 

affordable post-training quantization for large-scale transformers." Advances in neural information processing systems 35 
(2022): 27168-27183. 

2.  Grattafiori, Aaron, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman et 
al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).

3.  Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher. "Pointer sentinel mixture models." arXiv preprint 
arXiv:1609.07843 (2016).

4.  Xiao, Guangxuan, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. "Smoothquant: Accurate and efficient post-
training quantization for large language models." In International conference on machine learning, pp. 38087-38099. PMLR, 
2023.

References

Inference Accuracy

Hardware Implementation

Conclusion
•Our experimental results indicate that standard INT8 precision is 

insufficient to preserve LLM inference accuracy. 

•We show that supporting fine-grained, irregular bit lengths to 
maintain high LLM accuracy. 

•However, implementing these irregular bit lengths efficiently in 
hardware presents significant challenges, which are left as our 
future studies.
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Background
•Large language models (LLMs) consume too much memory and 

energy for inference

•Quantization [1] compresses model weights and activations from 
high precisions (e.g., FP32) to lower precisions (e.g., INT8, FP8)

Problem

•Standard 2-multiple bit lengths are often too coarse, providing a 
poor trade-off for preserving model accuracy.

Expected Result
•Provide fine-grain quantization precisions for higher LLM inference 

accuracy

•Achieve lower energy consumption or smaller area for the inference 
on hardware

•Eight-bit precision (INT8) is conventionally considered sufficient to 
preserve the inference accuracy of quantized LLMs. However, our 
experiments challenge this assumption.

Experiment Settings
•Large language model: Llama-3.2-8B [2]

•Task: WikiText2 [3]

•Quantization methods:
- Naïve:  𝑿𝒒 = # $𝑿

∆
, ∆= max	(|𝑿|)

𝟐𝑵"𝟏)𝟏
- SmoothQaunt [4]: Before applying naïve quantization, smooths the 
weights and activation by 𝑿𝒔 = 𝑿diag 𝒔 )𝒔,𝑾𝒔 = diag 𝒔 𝑾

•Metrics: 
- Root mean square error (RMSE) for quantization error
- Perplexity (cross-entropy loss) for inference accuracy

Objectives

•Save energy and reduce area
- Simplifying the multipliers in fused multiply-add (FMA) 
- Reducing data transfer 

Challenges

•(I) A data interface mismatch creates a bottleneck. 
    - The bandwidth of the data path is wasted without optimization

•(II) The accumulator precision requires a careful trade-off

Potential Solutions

•Design new memory interfaces according to the input lengths

•Optimized batched data transfer strategies

•Select the accumulation precision by analyzing trade-off between 
accumulator precision, FMA precision, and overall model accuracy 
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