Rethinking the Bit Length of Post-Training

Quantization for LLM Accuracy and
Hardware Efficiency

Il Introduction

| Background

® Large language models (LLMs) consume too much memory and
energy for inference

® Quantization [1] compresses model weights and activations from
high precisions (e.g., FP32) to lower precisions (e.g., INT8, FP8)

| Problem

® Standard 2-multiple bit lengths are often too coarse, providing a
poor trade-off for preserving model accuracy.

| Expected Result
® Provide fine-grain quantization precisions for higher LLM inference
accuracy

® Achieve lower energy consumption or smaller area for the inference
on hardware

Quantize

v
<

UELC

RIM=N

@) ||
R-CCS

anchen Lil, Chenlin Shil&2, Shinobu Miwa?Z, Kentaro Sanol
ational Science, 2The University of Electro-Communications

Il Hardware Implementation
| Objectives

® Save energy and reduce area
- Simplifying the multipliers in fused multiply-add (FMA)
- Reducing data transfer
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Space Complexity: O(n?)

| Challenges

® (1) A data interface mismatch creates a bottleneck.
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Il Inference Accuracy

® Eight-bit precision (INT8) is conventionally considered sufficient to
preserve the inference accuracy of quantized LLMs.

| Experiment Settings
® Large language model: Llama-3.2-8B [2]

® Task: WikiText2 [3]

® Quantization methods:

. X max (XD
Naive: X" = [A‘,A— IN-T1_q

- SmoothQaunt [4]: Before applying naive quantization, smooths the
weights and activation by X, = X diag(S)_S» W, = diag(S)W

® Metrics:
- Root mean square error (RMSE) for quantization error
- Perplexity (cross-entropy loss) for inference accuracy
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| Potential Solutions

® Design new memory interfaces according to the input lengths
® Optimized batched data transfer strategies

® Select the accumulation precision by analyzing trade-off between
accumulator precision, FMA precision, and overall model accuracy

Ill Conclusion

® Our experimental results indicate that standard INT8 precision is
insufficient to preserve LLM inference accuracy.

® We show that supporting fine-grained, irregular bit lengths to
maintain high LLM accuracy.

® However, implementing these irregular bit lengths efficiently in
hardware presents significant challenges, which are left as our

future studies.
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