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1. Introduction

* Target: Visual Question Answering (VQA) for small object
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Target region: originally high-resolution

After downsampling, the target region
ﬁ becomes heavily blurred. The VLM
cannot read the waiting time on the board
so 1t cannot answer the question.
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Vision encoder is typically trained with low-
Vision resolution images (e.g., 224 X 224, 336 X 336).

Encoder = Therefore, the input image size is restricted,

1 creating a bottleneck for high-resolution VQA.
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v Question:

From the information on the black framed

Vi board, how long do we have to wait i line for
\ { this attraction?
Answer

Example of VQA that illustrates the resolution bottleneck of conventional models

2. Architecture of the proposed method

* The points:
* No training Is required (Zero-shot learning)

Patch Extraction
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CLIP-Based Patch Extraction Pipeline
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3. Experiments on V* Bench

» Contents: high-resolution images (avg 2246 X 1582) and corresponding 191
small-object VQA tasks

» Task: Quantitative questions for images
 Attribute Recognition (115 tasks: color, material, state, etc.)
 Spatial Relationship Reasoning (76 tasks: positional relations among
multiple objects).
» Metrics: Accuracy on four-option multiple-choice questions

Spatial Relationship Reasoning
Question: Is the vehicle on the left or right
side of the blue umbrella ?

Attribute Recognition
Question: What 1s the color of the van ?

2250 X 1500

Images and the corresponding questions in V* Bench

4. Results

« Our method achieves close to the best attribute accuracy in zero-shot
approaches, though the parameters of our method are less than others.
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Results on Attribute Recognition Tasks

 Although our method is zero-shot, it approaches the performance of RL-
based methods and even achieves a higher score than ViGoRL.

Results on V* Bench

Method ::::::3 BaseModel Attibute (%) |Spatial (%) |Overall (%)
SEAL [1] - LLaVA-1.5-7B 74.8 76.3 75.4
DeepEyes [2] RL  |Qwen2.5-VL-7B 91.3 88.2 90.1
ViGORL [3] RL |Qwen2.5-VL-7B - - 86.4
TreeVGR [4] RL |Qwen2.5-VL-7B 94.0 87.0 91.1
RAP [5] - LLaVA-1.5-7B 90.4 96.1 91.1
Ours - Phi-4-multimodal-5.6B 88.7 75.0 83.3
Ours - Qwen2.5-VL-7B 87.0 86.8 86.9
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