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Introduction

CGRAs Architecture
Data format challenge

2000

0000

0300

0000

Tradi�onal HPC sparse matrix 

data=[2,3] 
indices=[3,2] 
indptr=[0,1,1,2,2]

3002

0040

3500

2001

Pruned AI sparse matrix

data=[2,3,4,5,3,1,2] 
indices=[0,3,1,2,3,0,3] 
indptr=[0,2,3,5,7]

Systolic Dataflow Challenge

Conclusion
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Early-stage SpMM approach
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• LS on the right-side can be used for more input matrix
• Assume that CGRAs size is n × n, we can calculate when input matrix is a × 2n, weight 

matrix is 2n x n.
• Make at least half of the elements of weight matrix for each column zero to ensure 

every result output from the bo�om LS �les can be specified.
• NB-complete problem or even impossible if weight matrix have no more limita�on to 

find the path.

• Make all rows of weight matrix can be paired complementarily
• It will significantly reduce the difficulty to find the path, only need to decide where to 

input the data and data from which side need to be calculated
• Reconfigura�on for each weight matrix is inevitable. How ever, only few path need to 

be changed, so it can poten�ally be simplified.

� For example, weight mar�x W, can be paird like
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� Then combine each pair into one row
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*Down-side path also contains fused mul�ply-add(FMA)

• In this poster, we present a detailed analysis of the challenges of execu�ng SpMM on 
CGRAs, focusing on mainstream encoding and systolic compu�ng techniques commonly 
used in AI accelerators.

• Our future work aims to develop novel so�ware-hardware co-design methodologies to
enable efficient SpMM on CGRAs.

• Coarse-grained reconfigurable Arrays (CGRAs) have emerged as 
promising accelerators with the increasing demand for AI applica�ons
• Can efficiently implement nonlinear func�ons cri�cal to AI workloads, such as so�max
• Have also shown the feasibility to be configured to matrix accelerators.

• Use sparse weight matrices instead of dense ones, it has become 
feasible to dras�cally reduce memory footprint while maintaining 
task-specific accuracy.

• Suppor�ng sparse matrix mul�plica�on at the hardware level has 
become a challenge.

• Three types of �les:
• Switch block (SB) �les are responsible for data forwarding.
• Load/store (LS) �les handle memory interac�ons.
• Processing element (PE) �les perform arithme�c computa�ons.

• Use bitstream to update the configura�on registers of SB and PE �les.
• Can emulate a systolic array-liked structure in CGRA-based matrix 

mul�plica�on.
• Weight- or output-sta�onary systolic dataflows are widely adopted.
• Mimic the data movement pa�erns of systolic arrays by constraining the SB �les to 

form orthogonal connec�ons in all four cardinal direc�ons.

• The conven�onal compressed sparse row (CSR) is not suitable for 
SpMM in AI applica�ons.

• Much higher non-zero elements in purned AI models than tradi�onal 
HPC applica�ons.
• Each non-zero element must be stored with its column index, which can case the total 

data footprint to exceed that of the original dense matrix.

• CSR cannot reduce the memory footprint
• This is a primary mo�va�on fort sparsity in AI.

• Systolic dataflow offers efficient dense matrix computa�on.
• Fails to exploit the performance benefits of sparsity in modern AI workloads
• Precise spa�otemporal alignment of ac�va�ons and weights at corresponding PEs are 

relied to produce correct results.

• Irregular posi�ons of non-zero elements in pruned AI models.
• Paths across SB �les are no longer fixed.
• The internal data forwarding paths across SB �les can not be determined sta�cally.

• Frequent bitstream reconfigura�on to accommodate the dynamic 
sparsity pa�ers required for CGRAs.
• Overhead and complexity of execu�ng SpMM significantly increased.
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