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I. Overview

Integer Ozaki Scheme utilizes low-precision INT8 tensor core (TC), a feature
supported since Turing architecture, to reduce the running time of a large quantity of
gemm kernels. Also, each gemm kernel is followed by one accumulation (accum)
kernel to accumulate the gemm result into the final high-precision matrix, which leads to

extra memory footprint and Kkernel

launch overhead. However,

previous

implementations rely on Cublas library, which hides kernel details and disables
implementation flexibility.

Compared to Matrix Multiply-Accumulate (MMA) instruction used in previous
architectures, Hopper GPUs introduce new features Warpgroup Matrix Multiply-
Accumulate (WGMMA) and tensor memory accelerator (TMA), which are favorable
to 1mplementations, 1.€. warp specialization and persistent kernel, creating new
possibilities for high-performance kernel.

This paper investigates how new features of Hopper architecture will affect INTS
gemm performance, utilizes them to implement gemm accum-fusion integer Ozaki
Scheme and compares it with Cublas for double-precision gemm (DGEMM).

I1. Ozaki Scheme
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Fig.1 Diagram of Ozaki Scheme

111. Hopper Architecture

Warpgroup Matrix Multiply-Accumulate (wgmma):

1. Async operation — flexible control

2. Support larger tile computation — faster than mma.sync

Tensor Memory Accelerator (TMA):

1. PTX 1nstruction: cp.async.bulk.tensor, cp.reduce.async.bulk.tensor and culensorMap
2. Async copy: gmem <> smem
3. Support multicast (one copy to multi-CTA 1n a cluster), store reduction

4. Less address computation and data transfer instruction — faster than cp.async

Warp Specialization:

1. decoupled warp role: producer and consumer — more flexible than multi-stage
2. regs allocation (setmaxnreg): more regs for consumer

Persistent Kernel:

1. All the CTAs in one wave — reduce CTA launch overhead; hide prologue and epilogue

IV. Methods

INTS8 GEMM

1. Explore how INT8 gemm compute speed 1s affected by three new features: wgmma,
TMA and warp specialization
2. Compare to cublas lib

Ozaki Scheme

1. Apply Hopper-empowered INT8 gemm to INT8 ozaki scheme
2. Fuse accum 1nto gemm to reduce memory consumption and kernel launch overhead
3. Compare multiple INT8 ozaki scheme implementations on compute speed and memory
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V. Experiment Setup

Machine

1. Grace cpu + H200 (GH200), cudal2.8,
compute capability 9.0

INTS8 GEMM

1. mma: cute/cutlass; multi-stage(cp.async)

+ mma

2. wgmma/wgmma_ tma:

multi-stage(cp.async/TMA) + wgmma
3. ws: cute/cutlass; warp specialization + tma

+ wgmma, modified from FP16 gemm [3]
4. cublas: cublas lib

cute/cutlass;

Ozaki Scheme

1.
2.

3.

n

mma: mma from INT8 gemm section
wgmma_tma: wgmma tma from INTS
gemm section

ws_accum_fuse: ws from INT8 gemm
section + gemm-accum fusion

ozaki cublas int8: cublas from INTS
gemm section

0ziMMU: code from [1], cublas gemm
cuBLASDX: mathDX lib

V1. Results on Compute Speed
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Fig.3 Results of profiling INT8 MM kernels under different implementations
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Fig.4 Results of profiling Ozaki Scheme under different implementations and

Split Number

Cublas for DGEMM. The imput size 1s 16384 X 16384 X 16384
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Fig.5 Results of profiling ws accum_fuse for different split numbers

m: matmul(m, m, m)

16384

below cublas after split
number 6()

ws_accum_fuse 1s
chosen as a
representative here

Tradeoff between
speed and split number
(precision)

[1] shows split number
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VI1I. Results on Memory Consumption
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Fig.6  GPU memory consumption of Ozaki Scheme under different implementations.
The mput size 1s 16384 X 16384 X 16384
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Fig.7 Memory consumption of Ozaki Scheme under different implementations for
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