
Tao Wang

Empowering Ozaki Scheme with Hopper Architecture

Takashi Shimokawabe

Graduate School of Engineering, The University of Tokyo Information Technology Center, The University of Tokyo

Split A Split B Gemm Accum

Pair 0 Pair i

Gemm Accum

Split A Split B Gemm+ accum

Pair 0 Pair i

Gemm+ accum

I. Overview

II. Ozaki Scheme

III. Hopper Architecture

V. Experiment Setup

VI. Results on Compute Speed

VII. Results on Memory Consumption

VIII Acknowledgements
This work was partially supported by JST SPRING Grant Number JPMJSP2108, JSPS

KAKENHI Grant Number JP24K02947 and JHPCN project jh250037.

IX. Reference

IV. Methods

[1] H. Ootomo et al., Dgemm on integer matrix multiplication unit. The International Journal

of High Performance Computing Applications, 38 (4):297–313, 2024.

[2] K. Ozaki et al.. Error-free transformations of matrix multiplication by using fast routines

of matrix multiplication and its applications. Numer. Algorithms, 59(1):95–118, Jan. 2012.

[3] https://github.com/CalebDu/Awesome-Cute

Integer Ozaki Scheme utilizes low-precision INT8 tensor core (TC), a feature

supported since Turing architecture, to reduce the running time of a large quantity of

gemm kernels. Also, each gemm kernel is followed by one accumulation (accum)

kernel to accumulate the gemm result into the final high-precision matrix, which leads to

extra memory footprint and kernel launch overhead. However, previous

implementations rely on Cublas library, which hides kernel details and disables

implementation flexibility.

Compared to Matrix Multiply-Accumulate (MMA) instruction used in previous

architectures, Hopper GPUs introduce new features Warpgroup Matrix Multiply-

Accumulate (WGMMA) and tensor memory accelerator (TMA), which are favorable

to implementations, i.e. warp specialization and persistent kernel, creating new

possibilities for high-performance kernel.

This paper investigates how new features of Hopper architecture will affect INT8

gemm performance, utilizes them to implement gemm accum-fusion integer Ozaki

Scheme and compares it with Cublas for double-precision gemm (DGEMM).

(1) Split K (2) Mutiple Gemms (3) Sum up

High-precision

Low-precision

Warpgroup Matrix Multiply-Accumulate (wgmma):

1. Async operation → flexible control

2. Support larger tile computation → faster than mma.sync

Tensor Memory Accelerator (TMA):

1. PTX instruction: cp.async.bulk.tensor, cp.reduce.async.bulk.tensor and cuTensorMap

2. Async copy: gmem smem

3. Support multicast (one copy to multi-CTA in a cluster), store reduction

4. Less address computation and data transfer instruction → faster than cp.async

Warp Specialization:

1. decoupled warp role: producer and consumer → more flexible than multi-stage

2. regs allocation (setmaxnreg): more regs for consumer

Persistent Kernel:

1. All the CTAs in one wave → reduce CTA launch overhead; hide prologue and epilogue

Machine

1. Grace cpu + H200 (GH200), cuda12.8,

compute capability 9.0

INT8 GEMM

1. mma: cute/cutlass; multi-stage(cp.async)

+ mma

2. wgmma/wgmma_tma: cute/cutlass;

multi-stage(cp.async/TMA) + wgmma

3. ws: cute/cutlass; warp specialization + tma

+ wgmma, modified from FP16 gemm [3]

4. cublas: cublas lib

Fig.3 Results of profiling INT8 MM kernels under different implementations

INT8 GEMM

1. Explore how INT8 gemm compute speed is affected by three new features: wgmma,

TMA and warp specialization

2. Compare to cublas lib

Ozaki Scheme

1. Apply Hopper-empowered INT8 gemm to INT8 ozaki scheme

2. Fuse accum into gemm to reduce memory consumption and kernel launch overhead

3. Compare multiple INT8 ozaki scheme implementations on compute speed and memory

consumption

Ozaki Scheme

1. mma: mma from INT8 gemm section

2. wgmma_tma: wgmma_tma from INT8

gemm section

3. ws_accum_fuse: ws from INT8 gemm

section + gemm-accum fusion

4. ozaki_cublas_int8: cublas from INT8

gemm section

5. oziMMU: code from [1], cublas gemm

6. cuBLASDX: mathDX lib

Fig.1 Diagram of Ozaki Scheme

Fig.2 Ozaki scheme

kernel pipeline

Fig.4 Results of profiling Ozaki Scheme under different implementations and

Cublas for DGEMM. The input size is 16384× 16384× 16384

Fig.5 Results of profiling ws_accum_fuse for different split numbers

Fig.6 GPU memory consumption of Ozaki Scheme under different implementations.

The input size is 16384× 16384× 16384

Fig.7 Memory consumption of Ozaki Scheme under different implementations for

different input sizes. The split number is set to 12 here.

SCA/HPCAsia 2026

Wgmma

TMA

Warp specialization

ws wins in some cases

over cublas when not

specifically tuned!

cublas denotes

DGEMM from cublas

cuBLASDX OOM after

split number 7…

ws_accum_fuse speed

does not drop or even

surpasses others when

split number is small

all ozaki schemes drops

below cublas after split

number 6

ws_accum_fuse is

chosen as a

representative here

Tradeoff between

speed and split number

(precision)

[1] shows split number

≥ 11 can steadily

obtain better precision

than cublas DGEMM

across various exp

range

ws_accum_fuse enjoys

smallest GPU memory

footprint

cuBLASDX OOM

after split number 7

when there is

enough GPU…

Saved memory

overhead are linear to

product of m and n, so

the benefit becomes

more apparent as the

input size increases.

Split number 12 is

chosen because this is

split number which can

steadily towers over

cublas on precision

across various exp

ranges

	Slide 1

