Empowering Ozaki Scheme with Hopper Architecture
Takashi1 Shimokawabe

Information Technology Center, The University of Tokyo

Graduate School of Engineering, The Unmiversity of Tokyo

lao Wang

I. Overview

Integer Ozaki Scheme utilizes low-precision INT8 tensor core (TC), a feature
supported since Turing architecture, to reduce the running time of a large quantity of
gemm kernels. Also, each gemm kernel is followed by one accumulation (accum)
kernel to accumulate the gemm result into the final high-precision matrix, which leads to

extra memory footprint and Kkernel

launch overhead. However,

previous

implementations rely on Cublas library, which hides kernel details and disables
implementation flexibility.

Compared to Matrix Multiply-Accumulate (MMA) instruction used in previous
architectures, Hopper GPUs introduce new features Warpgroup Matrix Multiply-
Accumulate (WGMMA) and tensor memory accelerator (TMA), which are favorable
to 1mplementations, 1.€. warp specialization and persistent kernel, creating new
possibilities for high-performance kernel.

This paper investigates how new features of Hopper architecture will affect INTS
gemm performance, utilizes them to implement gemm accum-fusion integer Ozaki
Scheme and compares it with Cublas for double-precision gemm (DGEMM).

I1. Ozaki Scheme

(1) Split K | (2) Mutiple Gemms

B B High-precision

Low-precision

-

X

-

A1 By

(3) Sum up

Ao By

Ay By

A1 B; A1 B3

OBZ AOBB

Az Bo

Az By

A, B>

2B3

Az Bo

A3 B,

3B2 A3B3

i+j<K —1

Fig.1 Diagram of Ozaki Scheme

111. Hopper Architecture

Warpgroup Matrix Multiply-Accumulate (wgmma):

1. Async operation — flexible control

2. Support larger tile computation — faster than mma.sync

Tensor Memory Accelerator (TMA):

1. PTX 1nstruction: cp.async.bulk.tensor, cp.reduce.async.bulk.tensor and culensorMap
2. Async copy: gmem <> smem
3. Support multicast (one copy to multi-CTA 1n a cluster), store reduction

4. Less address computation and data transfer instruction — faster than cp.async

Warp Specialization:

1. decoupled warp role: producer and consumer — more flexible than multi-stage
2. regs allocation (setmaxnreg): more regs for consumer

Persistent Kernel:

1. All the CTAs in one wave — reduce CTA launch overhead; hide prologue and epilogue

IV. Methods

INTS8 GEMM

1. Explore how INT8 gemm compute speed 1s affected by three new features: wgmma,
TMA and warp specialization
2. Compare to cublas lib

Ozaki Scheme

1. Apply Hopper-empowered INT8 gemm to INT8 ozaki scheme
2. Fuse accum 1nto gemm to reduce memory consumption and kernel launch overhead
3. Compare multiple INT8 ozaki scheme implementations on compute speed and memory

consumption Pair 0
Split A Split B

|
Split A Split B Gemm-+ accum

Pair 1

Pair 1

Fig.2 Ozaki scheme

Gemm-++ accum

kernel pipeline

V. Experiment Setup

Machine

1. Grace cpu + H200 (GH200), cudal2.8,
compute capability 9.0

INTS8 GEMM

1. mma: cute/cutlass; multi-stage(cp.async)

+ mma

2. wgmma/wgmma_ tma:

multi-stage(cp.async/TMA) + wgmma
3. ws: cute/cutlass; warp specialization + tma

+ wgmma, modified from FP16 gemm [3]
4. cublas: cublas lib

cute/cutlass;

Ozaki Scheme

1.
2.

3.

n

mma: mma from INT8 gemm section
wgmma_tma: wgmma tma from INTS
gemm section

ws_accum_fuse: ws from INT8 gemm
section + gemm-accum fusion

ozaki cublas int8: cublas from INTS
gemm section

0ziMMU: code from [1], cublas gemm
cuBLASDX: mathDX lib

V1. Results on Compute Speed

1400

1200

1000

Tops

800

600

400

—&— MMma

160

140

—A—mma

—k—wgmma

—@-wgmma_tma

——ws

—cublas

T

|
|

—X

__*_

—A—

—k

—A

=

4096

8192

m: matmul(m, m, m)

16384

Fig.3 Results of profiling INT8 MM kernels under different implementations

—+—wgmma_tma

—e—ws_accum_fuse

—+—o0zaki_cublas_int8

oziMMU

—>—CcuBLASDX

Wgmma 3
TMA A
Warp specialization /3

ws wWins in some cases
over cublas when not
specifically tuned!

—»—cublas

cublas denotes
DGEMM from cublas

cuBLASDX OOM after
split number 7...

ws_accum_fuse speed
does not drop or even
surpasses others when
split number 1s small)

all ozaki schemes drops

Fig.4 Results of profiling Ozaki Scheme under different implementations and

Split Number

Cublas for DGEMM. The imput size 1s 16384 X 16384 X 16384

—A—split_3

160

140

120

split_4

—e—split 5
—+—split_6

—<&—split_7

—»—split_8 split 9

—¥—split 10

split_11

m—split 12

——cublas

Fig.5 Results of profiling ws accum_fuse for different split numbers

m: matmul(m, m, m)

16384

below cublas after split
number 6()

ws_accum_fuse 1s
chosen as a
representative here

Tradeoff between
speed and split number
(precision)

[1] shows split number
> 11 can steadily
obtain better precision
than cublas DGEMM
across various exp
range

VI1I. Results on Memory Consumption

= = =
e (O] @)}
T T T

=
w
T

Memory (GB)

[o0]
T

16

14 |

Memory (GB)

—k—mMma

—+—wgmma_tma

—e—ws_accum_fuse

—+—o0zaki_cublas_int8

oziMMU

—»—CUuBLASDX

ws_accum_fuse enjoys
smallest GPU memory
footprinth

cuBLASDX OOM
after split number 7
when there is
enough GPU...

6 7 8

Split Number

10

11

12

Fig.6 GPU memory consumption of Ozaki Scheme under different implementations.
The mput size 1s 16384 X 16384 X 16384

12

10

mma
wgmma_tma
ws_accum_fuse
ozaki_cublas_int8
0ziMMU
CuBLASDX

-3.9% -0.5% +7.2%+10.5%10.79%

2048

-0.8% -5.19% +5.3%+13:2% 5 oo

4096
m: matmul(m, m, m)

8192

-7.3%

-0.2%

+15.0%

+0.2%

16384

Saved memory
overhead are linear to
product of m and n, so
the benefit becomes
more apparent as the
input size increases.

Split number 12 1s
chosen because this is
split number which can
steadily towers over
cublas on precision
across various exp
ranges

Fig.7 Memory consumption of Ozaki Scheme under different implementations for

VIII Acknowledgements

different input sizes. The split number 1s set to 12 here.

This work was partially supported by JST SPRING Grant Number JPMJSP2108, JSPS
KAKENHI Grant Number JP24K 02947 and JHPCN project 1h250037.

IX. Reference

[1] H. Ootomo et al., Dgemm on integer matrix multiplication unit. The International Journal
of High Performance Computing Applications, 38 (4):297-313, 2024.
[2] K. Ozaki et al.. Error-free transformations of matrix multiplication by using fast routines

of matrix multiplication and its applications. Numer. Algorithms, 59(1):95-118, Jan. 2012.
[3] https://github.com/CalebDu/Awesome-Cute

SCA/HPCAsia 2026

	Slide 1

