
Many real-world optimization problems involve objective functions that are unknown or too complex to model analytically.  

Black-box optimization addresses such cases by iteratively evaluating input–output relationships without requiring explicit 

knowledge of the objective function. Factorization-Machine-based Quantum Annealing (FMQA) combines a Factorization 

Machine (FM) model with an annealing solver to optimize black-box functions. The FM approximates the objective as a 

quadratic function of binary variables and is iteratively trained with new samples, while quantum or simulated quantum 

annealing (SQA) searches for optimal configurations based on the trained model.
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Although efficient FPGA-based SQA accelerators already exist, 

FM model training remains the bottleneck.  In this work, we 

propose an FPGA-based FM training accelerator that achieves 

3.7–7 times speedup over CPU implementation.This work also 

establishes the foundation for a complete FPGA-based black-

box optimization accelerator by integrating the FM training and 

SQA components within a unified system.
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The experimental results demonstrate that implementing the FM training on 

an FPGA significantly enhances performance compared to a software-only 

implementation. 

(learning rate, 

feature size)

CPU training time

(ms)

FPGA

SpeedupTraining time 

(ms)

Frequency

(MHz)

(0.001, 8) 21346 4335 332 5

(0.001, 16) 55447 7675 318 7

(0.1, 32) 106319 28561 317 3.7

(0.1, 64) 210856 48819 314 4.3

CPU: Intel Xeon 4316 

FPGA: Intel Agilex IA-840F
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➢ Further optimizations, such as 

performance can be further 

enhanced by increasing 

parallelism.

➢ Integrating FM training with 

SQA accelerators, fully FPGA-

based optimizer that delivers 

both high  performance and 

low power.
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