Deutsche Forschungsgemeinschaft

Comprehensive Plugin-Based Monitoring

of Nextflow Workflow Executions
Sami Kharma, Tobias Wies, Florian Schintke

Nextflow [1] is a workflow management system commonly used in fields like bioinformatics [2] and earth
observation [3]. It coordinates distributed data processing of various tools as an acyclic sequence of tasks
while using, containerization (e.g., Docker), orchestration (e.g., Kubernetes), or batch processing (e.g.,
SLURM). Monitoring such workflow executions can be challenging but aids performance analysis,

debugging, and data provenance.

Besides Nexflow's basic built-in monitoring, the wf-commons tool [4] for creating wf-instances is widely
regarded as the standard in the Nextflow community. The monitoring plugin we develpoed provides a more
detailed and flexible alternative compatible with wf-instances while removing the need for a custom
Nextflow fork by using Nextflow's plug-in mechanism (version 21.10), optional direct .jar file changes of

SFB 1404 FONDA

static artifacts without recompilation and allows online monitoring during execution.

Research Problem

How can real-time monitoring of Nextflow workflows be
achieved without custom forks, while maintaining both

compatibility with wf-commons standards as well as

portability?

Background

WfCommons [4]
WfCommons provides tooling and data for the scientific
data-analysis workflow research community.

Our Goal: Improve on data and tooling.

Nextflow [1]

Nextflow is a workflow management system facilitating
workflow executions with reproducibility and portability
in mind.

Our Goal: Empower users with greater insights into
their workflow executions.

Contribution

1. Monitoring Plugin collecting workflow execution
data, available during execution

2. Automated wf-instance generation from workflow
executions

3. Removing the need for recompilation of a custom
Nextflow fork while still maintaining the ability to
access the necessary Nextflow internals

Monitoring Overhead

Overhead on Nodes
Source Code from injection.

Cost Insignificant, O (1) with respect to task
runtime, as only one-time operations to
enumerate Node capabilities are
performed.

Overhead on Nextflow
Source Plugin itself.

Cost Limited testing has shown a runtime
overhead of approximately 5%. We believe
this can be significantly reduced with
further development efforts.

Monitoring Nextflow Executions

Developed a Nextflow Plugin enabling comprehensive
full-workflow monitoring without need for additional
privileges (/proc access allows more granularity).

Features:

* Hardware capability enumeration in distributed
infrastructure

* Output wf-instances with additional data

* Physical execution-graph with physical nodes

* Online monitoring supported

[Nextﬂow Plugin ﬁ‘]

Injection of resources
into JAR

%] ¢ nextFlow }"

Injected code runs
on compute node

as part of Nextflow’s
task wrapper

How it works:

1. Plugin registers callbacks for certain Nextflow
pipeline execution events (i.e., process submit)

2. Nextflow provides context to callback

3. Plugin uses Java reflection to access Nextflow
internals through context

4. Relevant information is gathered; shared filesystem
is accessed to collect further information (including
results of code injection written by each task)

Potential for extension:

Injected code can be easily modified to customize node-
level monitoring. l.e., collecting time-series data with
tools such as collect! (https://github.com/sharkcz/collectl).

-400

-350

300

250

200

Average CPU usage (%)

/4 |74
s
i
()

4
L7

R
,,,,,
7 \

150

"""""

-7
AL

100

50

Example task DAG and based on the result wf-instance from a complete execution
of the nf-core [6] rnaseq (3.22.1) bioinformatics workflow [5]. Node size is runtime.

Acknowledgements

® [1] P. Di Tommaso et al. 2017. Nextflow enables reproducible computational workflows. en. Nat Biotechnol, 35, 4, (Apr. 2017), 316—-319.
® [2] B.Van de Sande et al. 2020. A scalable SCENIC workflow for single-cell gene regulatory network analysis. en. Nat Protoc, 15, 7, (June 2020), 2247-2276.
® [3] F. Lehmann et al. 2021. FORCE on Nextflow: scalable analysis of earth observation data on commodity clusters. In vol. 3052. CEUR-WS.org. https://ceur-

\-Né.org/VoI-3052/short12.pdf.

® [4] T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, and R. Ferreira da Silva, "WfCommons: A Framework for Enabling Scientific Workflow Research
and Development," Future Generation Computer Systems, vol. 128, pp. 16-27, 2022.

® [5] [SW] H. Patel et al., nf-core/rnaseq: nf-core/rnaseq v3.19.0 - Tungsten Turtleversion 3.19.0, June 2025. doi:10.5281/zenodo0.15631172.

® [6] P. A. Ewels et al. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nature Biotech., 38, 3, 276—-278. doi:10.1038/s41587-020-

0439-x.

ZIB

ZUSE INSTITUTE BERLIN

Sami Kharma
Zuse Institute Berlin

Florian Schintke
Zuse Institute Berlin

Tobias Wies
TU Darmstadt

55 | Node

50| I Node 1
350 49 1
421 W Node 2

45{ I Node 3

300 i3] WS Node 4 .
20] Mmm Node 5 —
385 I Node 6 '

N
Ul
o

]
I
34 A I
B I
|

200

150

NNNNNNNNNWWWW
FNWARUIOONOOOORNW
T T T TR T TR T T N N

50 -

Average CPU usage (%)

H
©
—III-I-_

=
o
o

Ul
o

HFNWAUIOONOOOOR
T T T R N T S N N N

o

0 50 100 150 200 250 300
Seconds since workflow start

Example task DAG and Gantt chart of a partial (failed) execution of the nf-core [6]
rnaseq (3.22.1) bioinformatics workflow [5] on distributed infrastructure. Nodes
represent tasks, arrows represent dependencies. Size is runtime. The scheduler
used by Nextflow was SLURM. Visualized with a Python script using Graphviz and
matplotlib, exclusively based on the result wf-instance file.

For each task, available metadata includes:

* Name, id, parents, children, exact command(s)

* input files, output files, file sizes

* runtime, timestamps, CPU load, bytes read/written,
memory usage (vmem, rss), context switches

* Node name, OS release, architecture, memory, CPU
specifications, boot ID (enables matching nodes
despite containerization)

* |/O syscall counts, Nextflow status, work directory,
container data, environment variables, etc.

Repository: https://github.com/cookiephone/nf-bigbrother

Large-scale Data Collection:

We plan to utilize the plugin in conjunction with other
monitoring tooling to collect large amounts of rich
workflow execution data.

Further Development:

 Expand features as needed

* Improve ease-of-use

* Proper specification of extended wf-instances for
oetter usability

* Integration with other monitoring solutions

Communication/Outreach:
Continue Open-source releases of improved versions of
the monitoring plugin for Nextflow.

Reach out to wf-commons to replace existing wf-
instance generation for Nextflow executions.

This work received funding from the German Research
Foundation (DFG), CRC 1404:

FONDA: Foundations of Workflows for Large-Scale
Scientific Data Analysis



	Slide 1

