
Key Insights Code Complexity:
• Pragma-based approaches (OpenMP, OpenACC) are the simplest ways to get an algorithm to the GPU, but far from performant
• AdaptiveCpp (hipSYCL) and Kokkos (though Kokkos struggled, e.g., on the RTX4060 with performance using the same

code base) offer the best performance per Line of Code to Learn ratio
• Abstraction doesn’t always mean slower (e.g. Boost-Compute vs. OpenCL)

 Limitations and Future Work:
• Testing on AMD systems is work-in-progress, but still largely yet to be done
• Code Complexity does not factor in effort to set-up a working compiler infrastructure (e.g., Kokkos mostly working out of

the box, AdaptiveCpp requiring a custom LLVM installation)
• Exploring the shading language Slang in more detail
• Exploring technical more competitive implementations (shared memory usage, etc.)
• Exploring different algorithms (e.g. LinkedCells for particle simulation)

Halstead Complexity

Research Question

Methodology

Investigation of GPU Programming Paradigms with regard to
Code Complexity and Performance Portability
Jonas Schuhmacher(1), Hans-Joachim Bungartz(1)

(1)Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany, jonas.schuhmacher@tum.de | bungartz@cit.tum.de

SCA/ HPCAsia 2026

Code
Complexity

Empirical
Study

Source
Lines of

Code

…

LLVM
Cognitive

Complexity

Cyclomatic
Complexity

Results

How Performant is the paradigm?

How Portable is the paradigm?

How Productive am I using this paradigm?

Performance Portability

On the same
Platform h ∈ 𝐻

Across different
Compute Platforms
𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}

Performance

Portability

Architectural Efficiency 𝑒
[%]

Fraction of theoretical peak
hardware performance on ℎ

Application Efficiency 𝑒
[%]

Achieved Performance as a fraction
of the best observed value on ℎ

Φ 𝑎, 𝑝, 𝐻 =

|𝐻|

σℎ∈𝐻
1

𝑒ℎ(𝑎, 𝑝)

 𝑖𝑓 𝑒ℎ 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑛 𝐻

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition by Pennycook et al. (2019), for application 𝑎 solving problem 𝑝:

Code Complexity

• Accounts not only for program length, but also
takes vocabulary variance into consideration

• Solves the issue that a developer needs to
“learn” a function only once, e.g., five times
cudaMalloc()

Number of (distinct) operators/
operands

𝑛1, 𝑛2, 𝑁1, 𝑁1

Program Vocabulary 𝑛 𝑛1 + 𝑛2

Program Length 𝑁 𝑁1 + 𝑁2

Volume 𝑉 𝑁 ⋅ log2 𝑛

Difficulty 𝐷 𝑛1

2
⋅

𝑁2

𝑛2

Effort 𝐸 𝐷 ⋅ 𝑉

Example: int x = increment(1);

4 different problems 𝑝 with variable size 𝑛 (to also allow the observation of how performance/ efficiency scales in the paradigm)

𝑈 𝑥𝑖 , 𝑥𝑗 = 4𝜖
𝜎

𝑥𝑖 − 𝑥𝑗 2

12

−
𝜎

𝑥𝑖 − 𝑥𝑗 2

6 𝑉~ ෍

𝑓𝑎𝑐𝑒𝑠

෍

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

…

Vector Addition Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model

Benchmark them on four platforms calculating Application Efficiency 𝑒ℎ for every
framework on a single platform given a pair 𝑝, 𝑛

RTX 2080 RTX 3080 RTX 4060 RTX 5080

Calculate the Performance Portability Φ

Measure the Code Complexity

Source Lines of Code (SLOC) Halstead Complexity

Normalize SLOC and Halstead Effort comparing them to a CPU-only implementation

Implement these four problems in all GPU paradigms using the same feature subset and verify correctness

Key Insights Performance Portability:
• Different GPU paradigms perform differently on the same platform

despite being similar syntactic implementations.
• A simple algorithm in a native paradigm like Cuda usually

outperforms portable frameworks introducing certain abstraction,
but…
• low-level paradigms like OpenCL can come close.
• paradigms offering more control can also unlock performance.
• the shader language Slang compiled to Cuda outperforms the

native solution in case of a polyhedral gravity model
• Graphics APIs can be exploited for general purpose computation

with partial success (see Polyhedral Model with Slang)

Example Application Efficiency
A Matrix Multiplication 𝑝 is developed in 2 different paradigms and benchmarked with an
RTX5080 (platform h). Application 𝑎 takes 10s, Application 𝑏 takes 2s; then 𝑒ℎ 𝑎, 𝑝 = 20% and
𝑒ℎ 𝑏, 𝑝 = 100% since it was the best observed value.

or

Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model

Related Work:

Schuhmacher, J., Blazquez, E., Gratl, F., Izzo, D., & Gómez, P. (2024). Efficient Polyhedral Gravity Modeling in Modern C++ and Python. Journal of Open Source Software, 9(98), 6384. https://doi.org/10.21105/joss.06384
Brase, R. & Schuhmacher, J., (2025). Investigation of Parallelization Paradigms regarding Performance and Productivity in Context of a Polyhedral Gravity Model, Technical Report, Technische Universität München, https://mediatum.ub.tum.de/1781596
Ispas, M. (2025). Implementation and Comparison of Code Complexity Metrics to Assess Developer Productivity, Bachelor‘s Thesis, Technische Universität München, https://mediatum.ub.tum.de/1839972

More Results?
Have a look and

try it out on your platform!

https://doi.org/10.21105/joss.06384
https://mediatum.ub.tum.de/1781596
https://mediatum.ub.tum.de/1839972

	Slide 1

