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Example Application Efficiency

A Matrix Multiplication p is developed in 2 different paradigms and benchmarked with an Effort E
RTX5080 (platform h). Application a takes 10s, Application b takes 2s; then e, (a,p) = 20% and
e, (b,p) = 100% since it was the best observed value.
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Methodology

4 different problems p with variable size n (to also allow the observation of how performance/ efficiency scales in the paradigm)
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Vector Addition Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model
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Implement these four problems in all GPU paradigms using the same feature subset and verify correctness
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Benchmark them on four platforms calculating Application Efficiency e;, for every

faces segments

framework on a single platform given a pair (p, n) Measure the Code Complexity
RTX 2080 RTX 3080 RTX 4060 RTX 5080 Source Lines of Code (SLOC) Halstead Complexity
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Calculate the Performance Portability ® Normalize SLOC and Halstead Effort comparing them to a CPU-only implementation

Results
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Key Insights Performance Portability: g Key Insights Code Complexity:
* Different GPU paradigms perform differently on the same platform ¢ Pragma-based approaches (OpenMP, OpenACC) are the simplest ways to get an algorithm to the GPU, but far from performant
despite being similar syntactic implementations.  AdaptiveCpp (hipSYCL) and Kokkos (though Kokkos struggled, e.g., on the RTX4060 with performance using the same
 Asimple algorithm in a native paradigm like Cuda usually code base) offer the best performance per Line of Code to Learn ratio
outperforms portable frameworks introducing certain abstraction, ¢ Abstraction doesn’t always mean slower (e.g. Boost-Compute vs. OpenCL)
but... @
* |ow-level paradigms like OpenCL can come close. 222, Limitations and Future Work:
o

e paradigms offering more control can also unlock performance. Testing on AMD systems is work-in-progress, but still largely yet to be done
* the shader language S1ang compiled to Cuda outperforms the ¢ Code Complexity does not factor in effort to set-up a working compiler infrastructure (e.g., Kokkos mostly working out of

native solution in case of a polyhedral gravity model the box, AdaptiveCpp requiring a custom LLVM installation)
* Graphics APIs can be exploited for general purpose computation * Exploring the shading language Slang in more detail
with partial success (see Polyhedral Model with S1ang) e Exploring technical more competitive implementations (shared memory usage, etc.)
* Exploring different algorithms (e.g. LinkedCells for particle simulation)
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