SCA/ HPCAsia 2026

Investigation of GPU Programming Paradigms with regard to
Code Complexity and Performance Portability

Jonas Schuhmacher'!), Hans-Joachim Bungartz()
(WTechnische Universitat Minchen, Boltzmannstrafle 3, 85748 Garching, Germany, jonas.schuhmacher@tum.de | bungartz@cit.tum.de

tlveCpp (i(an penGL® Research Question Q How Performant is the paradigm?

‘2 Sla
@CL al a ka OpenMP > Q How Portable is the paradigm?

a
Oper]CL 4 k O k k OS OpenAGc @ How Productive am | using this paradigm?

Performance Portability Code Complexity

Definition by Pennycook et al. (2019), for application a solving problem p:

| Empirical
Across different | |H| _ _ _ Study Accounts not only for program length, but also
Performance 1 Ueigaraliapgent ‘x J takes vocabulary variance into consideration

Compute Platforms - ®(a,p,H) = Zhen er (a4, D) Solves the issue that a developer needs to

Portabilit . ' Cyclomatic |
H = {hl; h2; T hn} Y L0 otherwise CZ)/mpIexity P / “learn” a function only once, e.g., five times

N) cudaMalloc()
Code Number of (distinct) / n{n,, Ny, N

Complexity operands
On the same N, — Program Vocabulary n ny +n,

Platform h € H — [%] — — I, [%] | Cognitive Iiz:;cc?f Program Length N N; + N,
Fraction of theoretical peak Achieved Performance as a fraction : ,
Lk Complexity | ~ Code Volume V N -log, n

{ hardware performance on h of the best observed value on h

Halstead Complexity

f

 Architectural Efficiency e || Application Efficiency e

Difficulty D
Example Application Efficiency

A Matrix Multiplication p is developed in 2 different paradigms and benchmarked with an Effort E
RTX5080 (platform h). Application a takes 10s, Application b takes 2s; then e, (a,p) = 20% and
e, (b,p) = 100% since it was the best observed value.

Example: X

Methodology

4 different problems p with variable size n (to also allow the observation of how performance/ efficiency scales in the paradigm)

33—
& PN

T e | . N x ‘ U(xi'xj)=46<<||xi—xj||2) _<||xi—xj||2>>
Vector Addition Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model

—

Implement these four problems in all GPU paradigms using the same feature subset and verify correctness

=~ ~ =~

Benchmark them on four platforms calculating Application Efficiency e;, for every

faces segments

framework on a single platform given a pair (p, n) Measure the Code Complexity
RTX 2080 RTX 3080 RTX 4060 RTX 5080 Source Lines of Code (SLOC) Halstead Complexity
< 5= < 5=
Calculate the Performance Portability ® Normalize SLOC and Halstead Effort comparing them to a CPU-only implementation

Results

Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model More Results?
E 2500 o\ 1200 - \ 500
= oo = 2000 s Have a look and
E i q“c:) 800 A E .
£ 1500 5o E 0 try it out on your platform!
T 10001 © > o >
Q Framework[Version] 9 400- eg' e] 2 200 »
v 500 B Alpaka n rameworkIVersion v Framework[Version]
© m 5 i o . OpenMPp © 2009 | |] . 1 o leaka <] 2 R e ® - * | c ® AdaptiveCpp ' e
Vulkan OpenMP ® OpenACC H
§ 2500 | 2gaptiveCpp[Naive] § 1200 Vulkan OE- 500 Vulkan
o~ aptiveCpp[SharedMemory] 2 ® AdaptiveCpp oo OpenCL . #.
U 2000- W CPP Q10001 ® CPP U 4004 0 glokkosC] oy
EJ 1500 gs:sntCL E’ 8001 ;)sj:ta EJ Slang—Vquan L |
& M Kokkos g 600 - ® Kokkos Q 300+ ® CPP r -
HD: 1000 A B Cuda[Naive] A ® Cuda E ® Cuda -
S Cuda[SharedMemory] O 400 1 Problem Size O 2007 OpenMP .
’ B OpenACC O i Problem Size
% -_-ll_l o - B = © PrF:Jblem Size n 200 MG", , e g , o , . 18880 % 100;_._.,‘ - @ B | e 14744 . =
H 1024 Name @ 255932 :.: . -
— 300 . 8192 E 600 ® NBody — 600 Name | i . n n
E 230 o lltlﬂ?ai?ie;(Multiplication g 5007 g 097 9 TeceiEry E . %'ltl *'I
CICJ 200 A GCJ 400 - CICJ 400 A
:CI__J 150 1 qa_j 300 A qqt) 300
O 100 O 200- O 200 O
M . W e B e I hia et
||
a9 20 40 60 80 100 a0 o" 20 40 60 80 100 a0 20 40 60 80 100
Performance Portability [%] Performance Portability [%] Performance Portability [%]
Key Insights Performance Portability: g Key Insights Code Complexity:
* Different GPU paradigms perform differently on the same platform ¢ Pragma-based approaches (OpenMP, OpenACC) are the simplest ways to get an algorithm to the GPU, but far from performant
despite being similar syntactic implementations. AdaptiveCpp (hipSYCL) and Kokkos (though Kokkos struggled, e.g., on the RTX4060 with performance using the same
 Asimple algorithm in a native paradigm like Cuda usually code base) offer the best performance per Line of Code to Learn ratio
outperforms portable frameworks introducing certain abstraction, ¢ Abstraction doesn’t always mean slower (e.g. Boost-Compute vs. OpenCL)
but... @
* |ow-level paradigms like OpenCL can come close. 222, Limitations and Future Work:
o

e paradigms offering more control can also unlock performance. Testing on AMD systems is work-in-progress, but still largely yet to be done
* the shader language S1ang compiled to Cuda outperforms the ¢ Code Complexity does not factor in effort to set-up a working compiler infrastructure (e.g., Kokkos mostly working out of

native solution in case of a polyhedral gravity model the box, AdaptiveCpp requiring a custom LLVM installation)
* Graphics APIs can be exploited for general purpose computation * Exploring the shading language Slang in more detail
with partial success (see Polyhedral Model with S1ang) e Exploring technical more competitive implementations (shared memory usage, etc.)
* Exploring different algorithms (e.g. LinkedCells for particle simulation)

Related Work:

Schuhmacher, J., Blazquez, E., Gratl, F,, 1zzo, D., & Gomez, P. (2024). Efficient Polyhedral Gravity Modeling in Modern C++ and Python. Journal of Open Source Software, 9(98), 6384. https://doi.org/10.21105/joss.06384

Brase, R. & Schuhmacher, J., (2025). Investigation of Parallelization Paradigms regarding Performance and Productivity in Context of a Polyhedral Gravity Model, Technical Report, Technische Universitat Minchen, https://mediatum.ub.tum.de/1781596
Ispas, M. (2025). Implementation and Comparison of Code Complexity Metrics to Assess Developer Productivity, Bachelor’s Thesis, Technische Universitat Minchen, https://mediatum.ub.tum.de/1839972

https://doi.org/10.21105/joss.06384
https://mediatum.ub.tum.de/1781596
https://mediatum.ub.tum.de/1839972

	Slide 1

