
Key Insights Code Complexity:
• Pragma-based approaches (OpenMP, OpenACC) are the simplest ways to get an algorithm to the GPU, but far from performant
• AdaptiveCpp (hipSYCL) and Kokkos (though Kokkos struggled, e.g., on the RTX4060 with performance using the same 

code base) offer the best performance per Line of Code to Learn ratio
• Abstraction doesn’t always mean slower (e.g. Boost-Compute vs. OpenCL)

      Limitations and Future Work:
• Testing on AMD systems is work-in-progress, but still largely yet to be done
• Code Complexity does not factor in effort to set-up a working compiler infrastructure (e.g., Kokkos mostly working out of 

the box, AdaptiveCpp requiring a custom LLVM installation)
• Exploring the shading language Slang in more detail
• Exploring technical more competitive implementations (shared memory usage, etc.)
• Exploring different algorithms (e.g. LinkedCells for particle simulation)
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How Performant is the paradigm?

How Portable is the paradigm?

How Productive am I using this paradigm?

Performance Portability
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Definition by Pennycook et al. (2019), for application 𝑎 solving problem 𝑝:

Code Complexity

• Accounts not only for program length, but also 
takes vocabulary variance into consideration

• Solves the issue that a developer needs to 
“learn” a function only once, e.g., five times 
cudaMalloc()
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Example: int x = increment(1);

4 different problems 𝑝 with variable size 𝑛 (to also allow the observation of how performance/ efficiency scales in the paradigm)
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Vector Addition Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model

Benchmark them on four platforms calculating Application Efficiency 𝑒ℎ for every 
framework on a single platform given a pair 𝑝, 𝑛

RTX 2080 RTX 3080 RTX 4060 RTX 5080

Calculate the Performance Portability Φ

Measure the Code Complexity

Source Lines of Code (SLOC) Halstead Complexity

Normalize SLOC and Halstead Effort comparing them to a CPU-only implementation

Implement these four problems in all GPU paradigms using the same feature subset and verify correctness

Key Insights Performance Portability:
• Different GPU paradigms perform differently on the same platform 

despite being similar syntactic implementations.
• A simple algorithm in a native paradigm like Cuda usually 

outperforms portable frameworks introducing certain abstraction, 
but…
• low-level paradigms like OpenCL can come close.
• paradigms offering more control can also unlock performance.
• the shader language Slang compiled to Cuda outperforms the 

native solution in case of a polyhedral gravity model
• Graphics APIs can be exploited for general purpose computation 

with partial success (see Polyhedral Model with Slang)

Example Application Efficiency
A Matrix Multiplication 𝑝 is developed in 2 different paradigms and benchmarked with an 
RTX5080 (platform h). Application 𝑎 takes 10s, Application 𝑏 takes 2s; then 𝑒ℎ 𝑎, 𝑝 = 20% and 
𝑒ℎ 𝑏, 𝑝 = 100% since it was the best observed value.

or

Matrix Multiplication Pairwise (MD) N-Body Simulation ESA’s Polyhedral Gravity Model
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More Results?
Have a look and

try it out on your platform!
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