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Molecular Dynamics (MD)

Result

1. We presented a constraint algorithm in MD to enhance the computational 
speed while maintaining accuracy
• Mixed-precision for coordinate
• Single-precision with a pairwise sum algorithm

2. The new algorithms has much better accuracy than using single precision 
only.

3. The new algorithms improve performance on consumer-grade GPUs with 
limited FP64 throughput.

Summary

How to improve accuracy with FP32?
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1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion

• Trajectory should be accurate
• Long time MD trajectories are important to obtain thermodynamic quantities of target systems.
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1. Constraints in MD : freeze the chemical bonds involving hydrogen
2. Purpose of constraints: Increase the speed by enabling large time step

• Without constraint => Time step is 0.5 to 1.0 fs
• With constraint => Time step is 2.0 fs

3. How to solve constraints: Iteration with Lagrange multiplier
• We first assume unknown multiplier in constraint force, and the unknown 

multiplier is obtained with iterative way.
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• Lagrange multiplier 𝜆# is updated until 𝐫#) −𝐫#$  is close to 𝑑#.

Constraints in MD 𝒅
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Constraints Algorithm: M-SHAKE
For XHn case, we consider Lagrange multipliers at the same time instead of considering each one by one.
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• We can reduce the iteration by considering the coupling of 1-2 and 1-3.
• In each step, we need matrix inverse calculation for 2x2 (XH2 case) and 3x3 (XH3 case) 
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In M-SHAKE of XH2 and XH3, the Lagrange multipliers are obtained by
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Because coordinates are updated during iteration, we need to evaluate inverse matrix at every 
iteration.

Special treatment of XH1 case
By considering nonlinearity, we can obtain analytic solution of the Lagrange multiplier
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Quadratic equation of 𝜆)$ and we can obtain the solution from quadratic formula !!

• Accuracy of coordinate is limited to 10-7 ~ 10-6 by FP32. 
• Accordingly, the accuray of velocity is limited by 10-6 ~ 10-4 and we cannot obtain the maxium 

accuracy of FP32.
• This can limit the usage of commercial GPU.

Our suggestion to obtain the same level of velocity accuracy as coordinate accuracy
• We use mixed precision in coordinates by considering temporay coordinates as FP64.
• Velocity update is performed at the same time of coordinate update.

1. Initialization:
1.1. Load inverse masses: )

0$
 and )

0%
 (FP32)

1.2. Load the reference relative positions: 𝐫1! =
𝐫1 𝑡 − 𝐫2!(𝑡) (FP32)
1.3. Load predicted positions: 𝐫1∗(𝑡 +∆𝑡) and 
𝐫2!∗ (𝑡 +∆𝑡) (FP64)
1.4. Load predicted velocities: 𝐯1∗ 𝑡 + ∆5
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$

 (FP32)
1.5. Load target of bond length: 𝑑1! (FP32)

2. Iterative Loop:
for iter = 1, N:
    2.1. Compute predicted bond vectors (FP64):

    𝐫1!∗ = 𝐫1∗ 𝑡 +∆𝑡 − 𝐫2!∗ (𝑡 +∆𝑡) 
    2.2. Cast bond vectors to lower precision:

𝐫1!∗  (FP64) à𝐫1!∗  (FP32)
    2.3. Evaluate the constraint matrix 𝐀+,"  (FP32)
    2.4. Invert the matrix 𝐀+,&

-)  (FP32)
    2.5. Compute constraint violations (FP32):
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    2.6. Solve for Lagrange multipliers (FP32):
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3. Set the constrained coordinates and 
velocities (FP32):
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We further apply pairwise arithmetic instead of using FP64 for coordinates

1. Error of coordinate (εR (Å)) and velocity εV (Å/ps*) 
by M-SHAKE

2. Energy conservation

3. Performance of constraints


