New Constraint algorithms for GPU-Accelerated
Molecular Dynamics: Accuracy-Performance
Trade-offs Across GPU Architectures

Jaewoon Jung'2, Diego Ugarte La Torre':3, Chigusa Kobayashi', Katsuhisa Ozaki4, and Yuji Sugita?.23
TRIKEN R-CCS Z2RIKEN PRI 3Univ. Tokyo 4Shibaura Inst. Tech.

Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion

1 1
i oD p: (t+EAt)=pi (t—EAt>+Fi(t)At
[l 3 _ 1
M P (t +5At)At
pi=F ri(t+At)=ri(t)+M
Equation of Int ti MD trajectory
motion ntegration => Ensemble generation

« Trajectory should be accurate
» Long time MD trajectories are important to obtain thermodynamic quantities of target systems.

- - d
Constraints in MD —
1. Constraints in MD : freeze the chemical bonds involving hydrogen 1 2
i . i il Update of
2. Purpose of constraints: Increase the speed by enabling large time step cogrdinates

« Without constraint => Time step is 0.5t0 1.0 fs

« With constraint => Time step is 2.0 fs

3. How to solve constraints: Iteration with Lagrange muiltiplier

« We first assume unknown multiplier in constraint force, and the unknown
multiplier is obtained with iterative way.

F,(t) - F(®) +Zlkvio-k ®), 0, = |rk, _l'kzl2 -d*=0

1

€k
« Lagrange multiplier 4, is evaluated as

) iteration n
~ di* — |, — 1, |
k< 1 1 1
At? (l'k] - l'kz) . (rold,k, - rold,kz) (m—k] +m_k;)
« Lagrange multiplier 4, is updated until |r,; — r,| is close to d,.. 2

How to improve accuracy with FP32?

= Accuracy of coordinate is limited to 107 ~ 10 by FP32.

- Accordingly, the accuray of velocity is limited by 10~ 10 and we cannot obtain the maxium
accuracy of FP32.

 This can limit the usage of commercial GPU.

Our suggestion to obtain the same level of velocity accuracy as coordinate accuracy
« We use mixed precision in coordinates by considering temporay coordinates as FP64.
« Velocity update is performed at the same time of coordinate update.
1. Initialization:
1.1. Load inverse masses: —and — (FP32)
my e

1.2. Load the reference relative positions: ry; =
ro(t) —ry(0) (FP32)

1.3. Load predicted positions: r (t + At) and
1y, (t + At) (FP64)

1.4. Load predicted velocities: v; (¢ +2) and
Vi (¢ +) (FP32)

1.5. Load target of bond length: d,; (FP32)

2. Iterative Loop:
foriter=1, N:
2.1. Compute predicted bond vectors (FP64):
ry; = Iy (t + At) — 1y, (t + At)
2.2. Cast bond vectors to lower precision:
1y; (FP64) >r; (FP32)
2.3. Evaluate the constraint matrix Ay, (FP32)
2.4. Invert the matrix Ay}, (FP32)
2.5. Compute constraint violations (FP32):

& =dg — |_l‘6i,|2
2.6. Solve for Lagrange multipliers (FP32):

3. Set the constrained coordinates and }‘l]l |
velocities (FP32): }L= = Ay, 6
1y (t + At T, (t + At) and 1y, (t + At 03 n.
—n»(r;.- t +)A7) o) il) 2.7. Update r; (t + At) and 17, (¢ + At) (FP64)
i
vi (£ +2) o vy (£ +2) and vy, (¢ +4) - 28.Update s v; (£ +2) and v;, (£ +%) (FP32)

At
v (£ +5

We further apply pairwise arithmetic instead of using FP64 for coordinates

Constraints Algorithm: M-SHAKE

For XHn case, we consider Lagrange multipliers at the same time instead of considering each one by one.

SHAKE
2
L '3 Update 4,, —Updater; andr, — Update 4,3 — Updater; andr; ———
A2 /Heavy Hydrogen
)
Hydrogen Update A;, and A, Update ry, r,, and r,
« We can reduce the iteration by considering the coupling of 1-2 and 1-3.
« In each step, we need matrix inverse calculation for 2x2 (XHz case) and 3x3 (XHs case)
In M-SHAKE of XH2 and XHs, the Lagrange multipliers are obtained by
y: diy? = I — 1, f?
2 S A 12 _
XH,: }:2] =AX},,2 [d122 _ :rl _::2]. XHj: |3 | = Axbl d;3* — | —r|?
At? At? v A2 du® ~ Iy -
o (E'F E) (r; —1,) - (Fo1a1 — Toraz) E(rl —1) - (Fola1 —Foia3)
XH, — 2 2 2
2 At At At
E (rp—r3)- (rold,l - rold,z) (E"’ m_3> (rp—r3)- (rold,l - rold,3)
At At? At?
(Tl + E) (@t —15) * (Tora1 — Foraz) - (t; —15) * (Tola1 — Toraa)
At? At?
Ay, = m—l(ﬁ EOE (rold,l - rald,z) Tl(rl -n)- (rold,l - rold,4)
At? At? At?
m—l(l& —1y)- (rold,l - rald,z) (E‘F m_4> (ry—ry) - (rold,l - rold,4)

Because coordinates are updated during itq:‘trati(tqn, we need to evaluate inverse matrix at every
iteration.

Result

1. Error of coordinate (&r (A)) and velocity v (A/ps”) 2. Energy conservation
© 77 Xu2:Coordinate Error (r) XH2: Velocity Error (€) A
102 102 _ — SHAKEssETILE
- SP . PW-SP 3 ~12100] — M-SHAKE Iter = 2
N £ —— MSHAKE Iter = 3
1073 MP 107 3 -0
S o Double Precision
§10 10 >
g g 51225
5 5 8
& £ & 1250 Q
[] (] = 2000 4000 6000 8000 10000
0+ I_I I_I - e (59,
107" 1 2 3 107 1 2 3 B"msu

. — MLSHAKE, Iter = 2
Iteration 121001 — M.SHAKE, lter = 3

XH3: Coordinate Error (€5)

Iteration

XH3: Velocity Error (&
i i 12150
12200 Mixed Precision

12250

Energy (kcal/mol)

8000 10000

-12300 :
10 107
5 | 10— a0
o 10
107, 10°¢ -4350
— WSHAKE, her = 2
. R — WSHAKE, er - 3
1o 1 2 3 1o 1 2

Error &y

Special treatment of XH, case

By considering nonlinearity, we can obtain analytic solution of the Lagrange multiplier
At?
rf=n+ % (Toa1 —Toa2)hiz =14 +E b,
At 1
I=r _2_7r12 (rold,l - l'om,z)llz =r,— m—zbﬁlz

1 1 1 1\
I =151 = Iy = 1 4 2=+ =) (5 = 1) by + (== 4= b2, =2

Quadratic equation of 4,, and we can obtain the solution from quadratic formula !!

C
3
5 £ o0
Iteration Iteration §
£ a0
>
8
f @ -10350 .
3. Performance of constraints H Single Precision
-12350; 2000 4000 6000 0 0000
- P (lter=1) - MP (ter=1) time (ps)
Z12 oz SPler=2) Z2 WP (ter=2)
El S spiter=a) D
g ol 223 S8 (PW, her-2) 0 (ter-2) — hARe ter - 2
= 0 58 (W, ter-3) o fter-3) S -12100| — WsAE er - 3
c £
S 6l £ a2
& ‘ $ 12000 Single Precision (PW)
& &
g B-12250)
I§] g
& ~12300
0
RTX 3080 A6000 Ada H100 - 30554006 600 690610000
GPU Card time (ps)

1. We presented a constraint algorithm in MD to enhance the computational
speed while maintaining accuracy
« Mixed-precision for coordinate
« Single-precision with a pairwise sum algorithm

2. The new algorithms has much better accuracy than using single precision
only.

3. The new algorithms improve performance on consumer-grade GPUs with
limited FP64 throughput.

Acknowledgements

This work was supported in part by MEXT JSPS KAKENHI (Grant Nos. 19H05645 and 21H05249 (to Y.S.), 21H05282
(to 1.J.), and 23K11328 (to C.K.)). This work used computational resources of the TSUBAME4.0 provided by Institute
of Science Tokyo through the HPCI System Research Project (Project ID: hp250065).

