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Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion
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« Trajectory should be accurate
» Long time MD trajectories are important to obtain thermodynamic quantities of target systems.
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Constraints in MD  —
1. Constraints in MD : freeze the chemical bonds involving hydrogen 1 2
i . i il Update of
2. Purpose of constraints: Increase the speed by enabling large time step cogrdinates

« Without constraint => Time step is 0.5t0 1.0 fs

«  With constraint => Time step is 2.0 fs

3. How to solve constraints: Iteration with Lagrange muiltiplier

« We first assume unknown multiplier in constraint force, and the unknown
multiplier is obtained with iterative way.
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« Lagrange multiplier 4, is evaluated as
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« Lagrange multiplier 4, is updated until |r,; — r,| is close to d,.. 2

How to improve accuracy with FP32?

= Accuracy of coordinate is limited to 107 ~ 10 by FP32.

- Accordingly, the accuray of velocity is limited by 10~ 10 and we cannot obtain the maxium
accuracy of FP32.

 This can limit the usage of commercial GPU.

Our suggestion to obtain the same level of velocity accuracy as coordinate accuracy
« We use mixed precision in coordinates by considering temporay coordinates as FP64.
« Velocity update is performed at the same time of coordinate update.
1. Initialization:
1.1. Load inverse masses: —and — (FP32)
my e

1.2. Load the reference relative positions: ry; =
ro(t) —ry(0) (FP32)

1.3. Load predicted positions: r (t + At) and
1y, (t + At) (FP64)

1.4. Load predicted velocities: v; (¢ +2) and
Vi (¢ +) (FP32)

1.5. Load target of bond length: d,; (FP32)

2. Iterative Loop:
foriter=1, N:
2.1. Compute predicted bond vectors (FP64):
ry; = Iy (t + At) — 1y, (t + At)
2.2. Cast bond vectors to lower precision:
1y; (FP64) >r; (FP32)
2.3. Evaluate the constraint matrix Ay, (FP32)
2.4. Invert the matrix Ay}, (FP32)
2.5. Compute constraint violations (FP32):
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2.6. Solve for Lagrange multipliers (FP32):
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We further apply pairwise arithmetic instead of using FP64 for coordinates

Constraints Algorithm: M-SHAKE

For XHn case, we consider Lagrange multipliers at the same time instead of considering each one by one.
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« We can reduce the iteration by considering the coupling of 1-2 and 1-3.
« In each step, we need matrix inverse calculation for 2x2 (XHz case) and 3x3 (XHs case)
In M-SHAKE of XH2 and XHs, the Lagrange multipliers are obtained by
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Because coordinates are updated during itq:‘trati(tqn, we need to evaluate inverse matrix at every
iteration.

Result

1. Error of coordinate (&r (A)) and velocity v (A/ps”) 2. Energy conservation
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Special treatment of XH, case

By considering nonlinearity, we can obtain analytic solution of the Lagrange multiplier
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Quadratic equation of 4,, and we can obtain the solution from quadratic formula !!
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1. We presented a constraint algorithm in MD to enhance the computational
speed while maintaining accuracy
« Mixed-precision for coordinate
« Single-precision with a pairwise sum algorithm

2. The new algorithms has much better accuracy than using single precision
only.

3. The new algorithms improve performance on consumer-grade GPUs with
limited FP64 throughput.
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