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Learning Model with Vibration and Audio Signals Input
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Abstract Experimental Results

This study proposes a deep transfer learning model integrating vibration and acoustic signals for | To simulate bearing faults under varying loads, a self-built test rig was used at 1750 rpm with three
bearing fault diagnosis of rotating machinery. An experimental system was built using an AC servo motor | motor loads: no load, 0.5 hp, and 1 hp. The system setup (Fig.4) includes a 1 kW AC servo motor, servo
driven rotating machinery with changeable load, vibration sensor, and directional microphone, and ten | driver, PLC, HMI, magnetic powder brake, interchangeable bearing module (Fig.6), directional
replaceable bearings for experiments. Ten bearing modules with different health conditions include | microphone, and vibration sensor. The different types of defects are shown in ( Fig.5).
normal condition and nine different faults which include three inner ring defects, three outer ring defects, v _— A

and three ball defects in bearings. Both vibration and acoustic signals were collected and transformed - N eronhin
into time-domain and time-frequency images to form three-channel inputs. The VGG19-based model 1s v ' , vibration
employed for transfer learning model training, validation, and testing. Transfer learning across different ‘
loads (0, 0.5,1 hp) was applied. The experimental results showed that the accuracy of 97.16% (vibration),
98.88% (vibration + sound), and 99.23% (three-channel) are achieved. It demonstrates the effectiveness
of the proposed approach for health diagnosis of rotating machinery.
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e The Short-Time Fourier Transform (STFT) captures both time and frequency characteristics by | E _.% B LR i e 9 R ) § ¥ | 3 ~
applying a window function (e.g., Hanning) to signal segments, as calculated in Equation (1). This 2 ‘f" I“ l‘.‘h‘v“nn:“v Ill "'ﬂ"‘ n" “" ."‘ po B ."" po Mty 16
process converts 1D signals into 2D time-frequency spectrograms, where the horizontal and vertical ‘ - UEE BB oSN
axes represent time and frequency, respectively, while color intensity reflects energy levels. The “" ‘ '" _l F' -" 'H . L m . 4 ‘ﬁ} .l G “' . ‘ " H r H | ol “‘

overall transformation process i1s illustrated in Fig.1 R e N e Ee naE W
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Fig.6. Interchangeable Bearing Modules

2 3 This study uses a triple-channel input—vibration time, time-frequency, and acoustic time-frequency
g Stiding step_ § imag.es—to capture key fauh.: features anc} enhar}ce recognition. Transfer learning under 0.5 hp and 1 hp
— % 5 04 conditions verifies the effectiveness of this multi-source input.
SR R, U As shown in Fig.7, confusion matrices show accurate classification, while Fig.8 P-R curves confirm
SinE Darect:on IR o model robustness. Training results indicate the pretrained model is stable and suitable for transfer
Segment learning.

Fig.1. Vibration Time-Frequency Spectrogram Transformation Diagram

Methodology

* The triple-channel VGG19 model comprises 16 convolutional layers and three fully connected layers.
It utilizes stacked 3x3 filters to deepen the network for enhanced feature extraction, as illustrated in
Fig.2. This study employs transfer learning to analyze vibration and acoustic signals under varying
loads for rotating machinery fault diagnosis.
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Fig.2. Structure diagram of triple-channel model (VGG19) Fig.8 P-R curve of (a) X0+AO0 to X05+A05 (b) X0+AO0 to X1+A1 (¢) X0+AO0 to X05+A05 to X1+Al

In transfer learning across different load conditions, all models—whether single-channel, dual-channel,
and triple-channel promising performance in both pretraining and transfer phases. Table 1 presents the
classification accuracies of models under different input channel configurations. The results indicate that
both channel design and load transition strategy significantly affect fault classification accuracy.

 The model 1s pre-trained on 0 hp data to capture fault features, followed by sequential fine-tuning on
0.5 hp and 1 hp datasets to enhance adaptability. Diagnostic robustness 1s evaluated using accuracy,
precision, and recall.

Table 1. Accuracy of Transfer Learning with different Channel Inputs

Sliding sampling and 2D image conversion

. . : : . : : Models with diff: t ch | A Training Time(sec ) *

The system samples X-axis vibration and sound signals at 16 kHz, with a single 10 s sampling period oeen WITh TR Chanie cHray raining Time(sec)
(160,000 points per transaction). A0 to 205 O749% 128
L . L . X0 to X1 94.98% 146

 To extract more features, the first step is sliding sampling which involves extracting subsequences . > i
, . o . o . Single-Channel X0 to X05 to X1 97.16% 293
from a signal. The window size 1s set at 4096 points, resulting in each segment having 4096 data (Vib TF) TG 93T 50
. . . . . O ATF *
points. The sliding s.tep 1S set. at 1024 with an oveflap.rate of 75% . | | (A TF) YN AV -3
*  After sliding sampling, the tlme-frequ?ncy domain signals are transformed into 2D 1mages The total A0 to A0S (O AT 91.06% 3
sample count na (j) for each category 1s calculated by equation (2). X0 to X035 96.92, 153
16000 x 10 — 4096 , X0 to X1 07.05% 144
Tla(]) ~ 1024 + 1 = 153; ] = 0,1,2,..9 (2) Du.al-Channel X0 to X05 to X1 98.07% 229
(Vib ID+TF) X0+A0 to X05+A05 97.93% 104
. . . . , , (Vib TF+ A TF) _

*  Subsequently, one time-domain and two time-frequency image are normalized and combined to X0+A0Q to X1+Al 97.05% 191
create a three-channel 64x64 image as shown in Fig.3. gixix| XO0+A0 to X05+A05 to X1+Al 98.88% 118
| X0+A0 to X05+A05 97.82% 163
27D Image transformatlon> .Trlple-Channel X0+A0 to X1+A1 97 71% 93
(Vib TDHTF+ ATE) 56720 1o X05+A05t0 XT+AT 99.23% 153

2D time-Domain Image

*The improved training efficiency is attributed to a high-performance 64-bit Windows 11 workstation equipped
with an Intel Core 17-13700K CPU, 64 GB of memory, and an NVIDIA RTX 4070 GPU. (Python 3.9.19)

Conclusions

™ | S This study proposes a VGG19-based transfer learning framework using 64x64x3 images that fuse
fme-frequency vibration and acoustic features. This multi-channel design improves classification by eliminating
[ TR gf}?ﬁ g manual feature extraction. Triple-channel input achieved the highest accuracy of 99.23% in a three-stage

' C hecousti gl D time-frequency Image transfer (0 — 0.5 — 1 hp), outperforming other configurations. Multi-stage transfer also enhanced
adaptability and convergence. Gaussian noise slightly reduced accuracy but improved robustness.

Overall, the method enhances cross-domain performance, with future work focusing on broader
Data Augmentation and Transfer Learning application and feature refinement.

To improve generalization, vibration signals were augmented with Gaussian noise, doubling the dataset
without distortion. The model utilizes VGG19 pre-trained on no-load data. The dataset 1s split into 49% ACkn OWIedg ments
for training, 21% for validation, and 30% for testing. A low learning rate and early stopping were applied

to prevent overfitting. During transfer learning, feature layers were frozen, and new fully connected layers
were fine-tuned on target datasets.
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Fig.3: Three-channel image composition diagram
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