
To simulate bearing faults under varying loads, a self-built test rig was used at 1750 rpm with three 

motor loads: no load, 0.5 hp, and 1 hp. The system setup (Fig.4) includes a 1 kW AC servo motor, servo 

driver, PLC, HMI, magnetic powder brake, interchangeable bearing module (Fig.6), directional 

microphone, and vibration sensor. The different types of defects are shown in ( Fig.5).

This study uses a triple-channel input—vibration time, time-frequency, and acoustic time-frequency 

images—to capture key fault features and enhance recognition. Transfer learning under 0.5 hp and 1 hp 

conditions verifies the effectiveness of this multi-source input.

As shown in Fig.7, confusion matrices show accurate classification, while Fig.8 P–R curves confirm 

model robustness. Training results indicate the pretrained model is stable and suitable for transfer 

learning.

In transfer learning across different load conditions, all models—whether single-channel, dual-channel, 

and triple-channel promising performance in both pretraining and transfer phases. Table 1 presents the 

classification accuracies of models under different input channel configurations. The results indicate that 

both channel design and load transition strategy significantly affect fault classification accuracy.
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Abstract
This study proposes a deep transfer learning model integrating vibration and acoustic signals for 

bearing fault diagnosis of rotating machinery. An experimental system was built using an AC servo motor 

driven rotating machinery with changeable load, vibration sensor, and directional microphone, and ten 

replaceable bearings for experiments. Ten bearing modules with different health conditions include 

normal condition and nine different faults which include three inner ring defects, three outer ring defects, 

and three ball defects in bearings. Both vibration and acoustic signals were collected and transformed 

into time-domain and time-frequency images to form three-channel inputs. The VGG19-based model is 

employed for transfer learning model training, validation, and testing. Transfer learning across different 

loads (0, 0.5,1 hp) was applied. The experimental results showed that the accuracy of 97.16% (vibration), 

98.88% (vibration + sound), and 99.23% (three-channel) are achieved. It demonstrates the effectiveness 

of the proposed approach for health diagnosis of rotating machinery.

Keywords—Rotating Machine, Transfer Learning, Deep Learning, Bearing Health Diagnosis, 

VGG19 

Technical background
• The Short-Time Fourier Transform (STFT) captures both time and frequency characteristics by 

applying a window function (e.g., Hanning) to signal segments, as calculated in Equation (1). This 

process converts 1D signals into 2D time-frequency spectrograms, where the horizontal and vertical 

axes represent time and frequency, respectively, while color intensity reflects energy levels. The 

overall transformation process is illustrated in Fig.1.

Methodology

• The model is pre-trained on 0 hp data to capture fault features, followed by sequential fine-tuning on 

0.5 hp and 1 hp datasets to enhance adaptability. Diagnostic robustness is evaluated using accuracy, 

precision, and recall. 

Experimental Results

Conclusions
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This study proposes a VGG19-based transfer learning framework using 64×64×3 images that fuse 

vibration and acoustic features. This multi-channel design improves classification by eliminating 

manual feature extraction. Triple-channel input achieved the highest accuracy of 99.23% in a three-stage 

transfer (0 → 0.5 → 1 hp), outperforming other configurations. Multi-stage transfer also enhanced 

adaptability and convergence. Gaussian noise slightly reduced accuracy but improved robustness. 

Overall, the method enhances cross-domain performance, with future work focusing on broader 

application and feature refinement.
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Fig.4. Simulation Platform for Diagnosis

Fig.6. Interchangeable Bearing Modules

Fig.7. Confusion matrix of (a) X0+A0 to X05+A05 (b) X0+A0 to X1+A1 (c) X0+A0 to X05+A05 to X1+A1
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Fig.8 P-R curve of (a) X0+A0 to X05+A05 (b) X0+A0 to X1+A1 (c) X0+A0 to X05+A05 to X1+A1

Models with different channel Accuracy Training Time(sec）*

Single-Channel

(Vib TF)

(A TF)

X0 to X05 97.49% 128

X0 to X1 94.98% 146

X0 to X05 to X1 97.16% 293

A0 to A05 89.21% 100

A0 to A1 87.14% 75

A0 to A05 to A1 91.06% 83

Dual-Channel

(Vib TD+TF) 

(Vib TF+ A TF)

X0 to X05 96.92% 153

X0 to X1 97.05% 144

X0 to X05 to X1 98.07% 229

X0+A0 to X05+A05 97.93% 104

X0+A0 to X1+A1 97.05% 191

X0+A0 to X05+A05 to X1+A1 98.88% 118

Triple-Channel

(Vib TD+TF + A TF)

X0+A0 to X05+A05 97.82% 163

X0+A0 to X1+A1 97.71% 93

X0+A0 to X05+A05to X1+A1 99.23% 153

Table 1. Accuracy of Transfer Learning with different Channel Inputs
Sliding sampling and 2D image conversion

• The system samples X-axis vibration and sound signals at 16 kHz, with a single 10 s sampling period 

(160,000 points per transaction).

• To extract more features, the first step is sliding sampling which involves extracting subsequences 

from a signal. The window size is set at 4096 points, resulting in each segment having 4096 data 

points. The sliding step is set at 1024 with an overlap rate of 75% .

• After sliding sampling, the time-frequency domain signals are transformed into 2D images The total 

sample count 𝑛𝑎 (𝑗) for each category is calculated by equation (2).

• Subsequently, one time-domain and  two time-frequency image are normalized and combined to 

create a three-channel 64x64 image as shown in Fig.3.

Data Augmentation and Transfer Learning

To improve generalization, vibration signals were augmented with Gaussian noise, doubling the dataset 

without distortion. The model utilizes VGG19 pre-trained on no-load data. The dataset is split into 49% 

for training, 21% for validation, and 30% for testing. A low learning rate and early stopping were applied 

to prevent overfitting. During transfer learning, feature layers were frozen, and new fully connected layers 

were fine-tuned on target datasets.

            

                       

                

       

                    

               

              

              

               

              

                       

       

                       

       

       

Fig.3: Three-channel image composition diagram

𝑛𝑎 𝑗 ≈
16000 × 10 − 4096

1024
+ 1 = 153;  𝑗 = 0,1,2, … 9 (2)

• The triple-channel VGG19 model comprises 16 convolutional layers and three fully connected layers. 

It utilizes stacked 3x3 filters to deepen the network for enhanced feature extraction, as illustrated in 

Fig.2. This study employs transfer learning to analyze vibration and acoustic signals under varying 

loads for rotating machinery fault diagnosis. 

Fig.1. Vibration Time-Frequency Spectrogram Transformation Diagram
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Fig.2. Structure diagram of triple-channel model (VGG19)
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Fig.5. Representation of bearing fault 

conditions: (a) Outer Race Fault and (b) 

Inner Race Fault.
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*The improved training efficiency is attributed to a high-performance 64-bit Windows 11 workstation equipped 

with an Intel Core i7-13700K CPU, 64 GB of memory, and an NVIDIA RTX 4070 GPU. (Python 3.9.19 )
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