
QUAPP - A CLOUD-HOSTED PLATFORM-AS-A-
SERVICE FOR HYBRID QUANTUM-HPC COMPUTING

Quantum Application Cloud

TUAN TAI PHAN
tuantai.phan@quapp.cloud

Quapp Inc.
Japan

1 Quapp Architecture

👥 Clients 🌐 Quapp Function Portal 📱 Showcase Web App ⚡Quapp SDK 📓AI-powered IDE - JupyterLab

🔌 API Gateway (REST + WebSocket) 🛡️ Cross-Cutting (Security, Logging, Audit)

⚙️ Core Services
⚛️ Quantum Execution

Function, Job, Invocation
🖥️ Device Management
Providers, Availability

🏢 Organization
Workspace, Project, User

💰 Billing Management
Subscription, Quota

☁️ Platform Layer
🚀 FaaS (Knative) 🐳 Container Registry

IBM Quantum Azure Quantum AWS Braket D-Wave Rigetti OQC

💾 Data Layer 🌐 External Services

Cognito SQS Stripe K8s OTel

2 Quantum Job Lifecycle

📋 Job Status Flow
▶️ Invoke ⏳ Pending 📥 Queued ⚛️ Running ✅ Done ❌ Error 🚫 Cancelled

⚡ Invocation Pipeline
1️⃣ Estimate

Cost & Resources
2️⃣ Register
Provider Job

3️⃣ Prepare
Validate Circuit

4️⃣ Execute
Run on Device

5️⃣ Analyse
Process Results

6️⃣ Finalize
Cleanup & Metrics

4 Quapp Deployment View

5 JupyterHub IDE Integration

👥 User Interface

🔌 API Gateway

⚙️ Application Layer
🐳 Container Registry 🔄 CI/CD Pipeline ☸️ Kubernetes

(Knative, OpenFaaS)
🔮 Functions
Q/C/Hybrid

☁️ Cloud Layer
⚡ Quapp Core 🐘 PostgreSQL ⚡ Redis ☁️ S3 📨 SQS ⛓️ Handler Chain

⚛️ Quantum Cloud
Simulators Quantum Hardware IBM Braket Azure D-Wave

📊 Monitoring

📋 Jobs Monitor
Status, Queue, Execution

⚡ Functions Monitor
Invocations, Deployments

🖥️ System Monitor
Health, Resources, Logs

☸️ Deployment Monitor
Pods, Containers, Scaling

💰 Cost & Quota Monitor
Usage, Billing, Credits

📈 Tracing (OpenTelemetry)
Spans, Metrics, Traces

7 Show Cases — Results & Applications

👥 User Interface
🖥️ Dashboard 📓 JupyterLab IDE

⚙️ Service Backend

🔌 REST API 🔄 IDE Service

📤 IdeStartResponse (url, cookies, sessionId)

🔐 Authorization

🛡️ ACL Service

Roles & Permissions

💾 Database

📋 JupyterIdeEntity

📓 JupyterHub Server (External)

🔌 JupyterHub API

🔐 Authenticator
Validates QuApp JWT

🖥️ User Server
JupyterLab Container

⚙️ Configuration Management

Status: 🟡 STARTING → 🟢 RUNNING → 🔴 STOPPED

🔄 Startup Flow
1️⃣ User clicks
"Open in IDE"

2️⃣ Validate
Permissions

3️⃣ Call
JupyterHub API

4️⃣ Spawn User
Container

5️⃣ Return URL
& Cookies

6️⃣ Open
JupyterLab

7️⃣ User
Edits Code

6 MCP Quantum Code Generation Architecture

👥 Client Layer
📓 JupyterLab Extension 🌐 Web App 🔄 WebSocket 🔌 REST API

⚙️ MCP Service Layer
🤖 MCP Gateway
Request Router

📋 MCP Controller
REST + WS

⚙️ MCP Service
Protocol Impl

📊 Token
Tracker

📝 Context Builder 🧠 Prompt Engine
(Quantum Templates)

✅ Code Validator
(Syntax + Quantum)

📡 Streaming Response Handler (SSE/WebSocket) 🔀 Provider Router (Fallback Logic)

🤖 AI Provider Abstraction

📚 Provider Registry
(Dynamic Loading)

🟠 Claude Adapter
(Anthropic API)

🟢 OpenAI Adapter
(GPT-4 API)

🟣 Local Adapter
(Ollama/LocalAI)

Auto Failover: Claude → OpenAI → Local 🌐 External AI Services

🟠 Claude API
Claude 3.5

🟢 OpenAI
GPT-4

🟣 Ollama
Local

🔑 Secrets

💾 Data Layer
Sessions & History & Analytics Session & Context 💻 Code Generation 📊 Provider Analytics 📝 Quantum Template

✨Features Multi-Provider Streaming Context-Aware Code Validation Qiskit Cirq PennyLane Auto-Fallback <3s Latency

Quantum Application Cloud

quapp.cloud | SCA/HPC Asia 2026 Poster Session | A0 Portrait (841mm x 1189mm)

3 Job Priority Queue System

🔄 Smart Queue Processing

📡 Job Listener Priority?

⭐ HIGH → Execute Now

📌 NORMAL →
High Queue Empty?

✅ Yes → Execute

🔄 No → Requeue
(Wait for HIGH)

⚡ Async Execute Job
📋 Update Status

IN_QUEUE →
RUNNING

🔄 Retry & Failure Handling

Job Failed Retries
Left?

✅ Yes → Requeue to NORMAL Queue
(retry - 1)

☠️ No → Dead Letter Queue

💾 Project Priority Management

📋 ProjectPriorityEntity
• projectId (FK)
• queuePriority: HIGH | NORMAL

⚙️ Priority Services
• QueryService (read)
• CommandService (update)

Introduction
 Quantum computing is transitioning from theory to practical utility, with diverse hardware now accessible via cloud
services. However, a key barrier remains: the lack of unified infrastructure bridging quantum research and production
deployment.
Current quantum cloud platforms operate as isolated ecosystems, each requiring specialized expertise in provider-
specific tools and workflows. This fragmentation forces researchers to spend time on platform adaptation rather than
algorithmic innovation. The steep learning curve further challenges domain scientists without quantum computing
backgrounds.
Research Question: How can we design a unified platform that democratizes access to heterogeneous quantum
resources while reducing complexity through intelligent development assistance?
Our Contribution: We introduce Quapp Functions, a quantum computing platform that unifies access to diverse
quantum environments with AI-assisted development capabilities. Key features include:

(1).A Unified Gateway: Single abstraction layer accessing eight major quantum providers (superconducting,
trapped-ion, and annealing architectures) without vendor-specific concerns
(2).AI-Assisted Development: Large language model integration via Model Context Protocol, enabling context-
aware quantum algorithm generation within an embedded JupyterHub environment
(3).Enterprise-Grade Infrastructure: Multi-tenant workspaces, granular access control, quota-based resource
allocation, and comprehensive auditing

We detail the system architecture, hybrid quantum-classical computation lifecycle, priority-based job scheduling, and
real-time execution monitoring. Quapp Functions streamlines the pathway from algorithm conception through multi-
platform execution and analysis.
Keywords: quantum computing platform, quantum cloud integration, AI-assisted quantum programming, hybrid
quantum-classical systems, multi-provider quantum gateway.

Quapp: A Cloud-Native Platform for Quantum Computing
 This poster presents Quapp, a cloud-native Platform-as-a-Service that simplifies quantum computing through an
integrated environment for algorithm development, deployment, and execution.
Desgin Rationale

Cloud-Native Paradigm: Enables elastic scalability and fault tolerance for unpredictable quantum job execution
times and varying hardware availability
Microservices Architecture: Isolates quantum execution, device management, organization governance, and
billing into independently deployable and scalable services
Provider Abstraction (Adapter Pattern): Encapsulates vendor-specific APIs behind unified interfaces, mitigating
vendor lock-in and future-proofing against API changes
Serverless Execution (FaaS): Eliminates infrastructure overhead while enabling fine-grained metering for multi-
tenant cost attribution
Event-Driven Scheduling: Accommodates asynchronous quantum computations with extended queue times on
constrained hardware

 Architecture
Client Layer: Four interfaces—Quapp Function Portal (web management), Showcase Web App (demos), Quapp
SDK (programmatic access), and AI-powered JupyterLab IDE. All requests route through REST/WebSocket API
Gateway.
Cross-Cutting Layer: Enterprise security, logging, and audit capabilities enforced consistently across services.
Core Services: Quantum Execution (Functions, Jobs, Invocations), Device Management (provider integration,
availability), Organization (Workspaces, Projects, Users), and Billing (Subscriptions, Quotas).
Platform Layer: Knative serverless execution with Container Registry, integrating six providers: IBM Quantum,
Azure Quantum, AWS Braket, D-Wave, Rigetti, and OQC. External services include AWS Cognito, Amazon SQS,
Stripe, Kubernetes, and OpenTelemetry.

Job Scheduling
 Priority queue system where high-priority jobs execute immediately; normal-priority jobs proceed when high-priority
queues empty. Includes comprehensive retry logic and failure handling for QoS differentiation.
Contributions

Multi-provider abstraction: write-once, execute anywhere
Enterprise capabilities: multi-tenancy, RBAC, job-level cost tracking
AI-assisted quantum code generation via Model Context Protocol

Future Work: Standardized provider authentication, fault-tolerant quantum computer support, and automated
backend selection based on availability, queue depth, and gate fidelity.

Conclusion
 Quapp is a cloud-native platform that simplifies quantum computing through an integrated environment for
algorithm development, deployment, and execution. It abstracts hardware heterogeneity across six providers—IBM
Quantum, Amazon Braket, Azure Quantum, Rigetti, D-Wave, and OQC—letting researchers focus on algorithms
rather than infrastructure.
Key Contributions:

Multi-provider abstraction enabling write-once execution across gate-based processors and quantum annealers
Serverless deployment supporting Qiskit, Cirq, PennyLane, and Braket SDK
JupyterHub integration bridging prototyping and production
Enterprise capabilities: multi-tenancy, role-based access control, job-level cost tracking
AI-assisted code generation via Model Context Protocol

By lowering barriers to quantum programming, Quapp accelerates discovery of practical applications in optimization,
cryptography, materials science, and pharmaceuticals—demonstrating that cloud-native principles proven in
classical computing apply effectively to quantum infrastructure.

Illustration

THANH LIEM DOAN VAN
thanhliem.doanvan@quapp.cloud

Quapp Inc.
Vietnam

4

CONTACT US
🌐 quapp.cloud

📧 corp@quapp.cloud

📍 Quapp Inc.

SCAN TO VISIT

REFERENCES

ACKNOWLEDGMENTS
This work is supported by the Quapp development team and our partners in quantum computing research. We

extend our gratitude to the quantum computing community for their continued collaboration and to the SCA/HPC
Asia 2026 organizing committee for the opportunity to present our work.

Hoa T. Nguyen, Muhammad Usman, Rajkumar Buyya. (2022). QFaaS: A Serverless Function-as-a-Service
Framework for Quantum Computing. 10.48550/arXiv.2205.14845.

