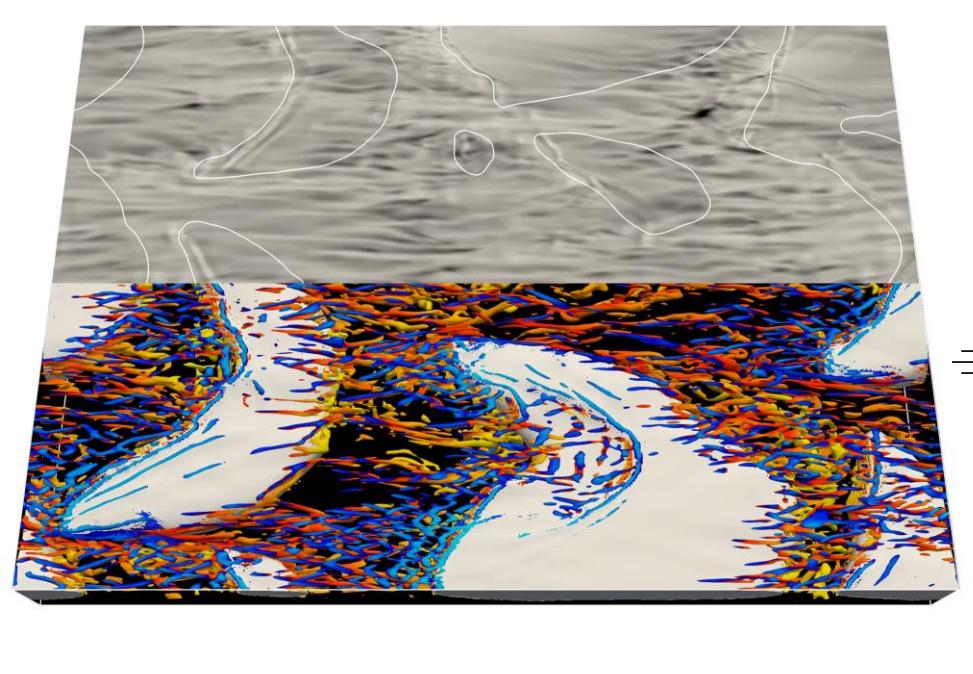


Hamiltonian Simulation for Allen-Cahn phase-field model by Quantum-Classical Hybrid Approach

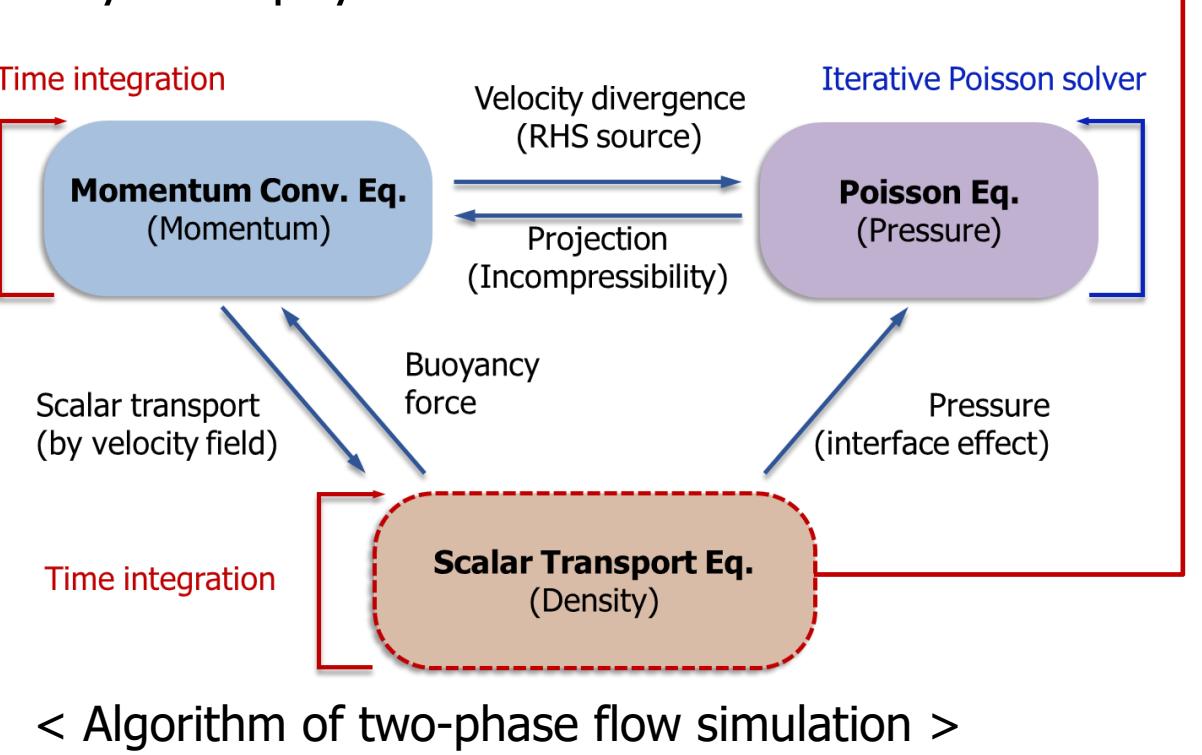
Which quantum algorithms could offer advantage for solving PDEs? (Especially, phase-field model)

Algorithm for two-phase flow simulation

- Solve Navier-Stokes (Momentum, Poisson Eqs.) and Scalar Transport (Density) Eq.
- Multi-scale phenomena → Large-gap on time-step (Δt) between two regime
 - Bulk flow advection-diffusion vs interfacial capillary microphysics



< Navier-Stokes equations (Bubbly flow) >



< Algorithm of two-phase flow simulation >

Phase-field (Allen-Cahn)

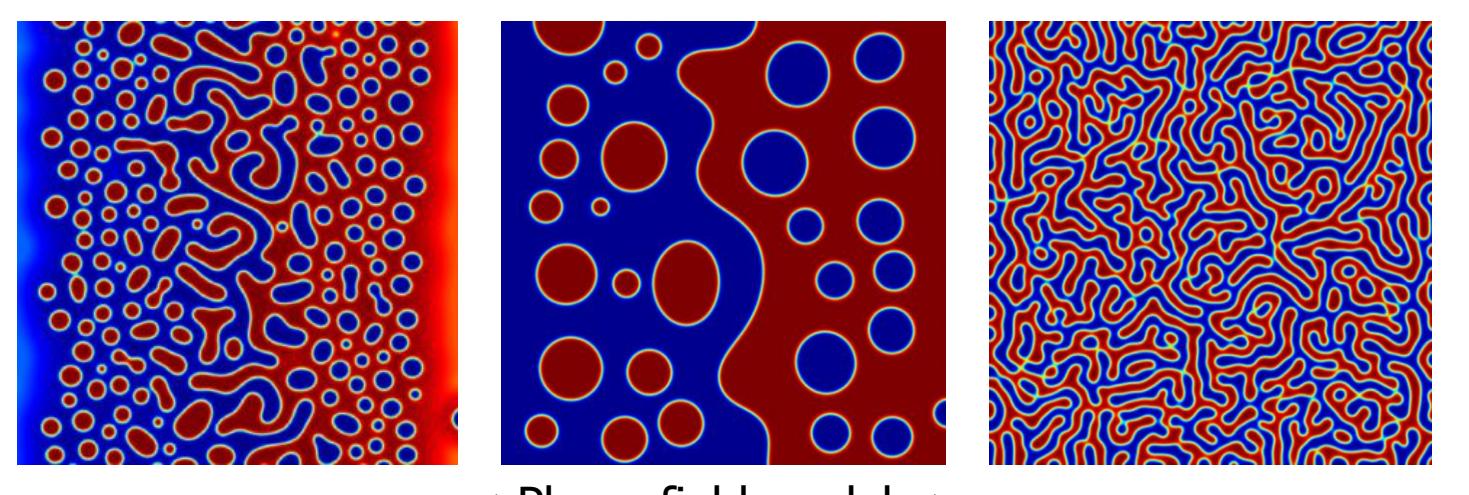
$$\frac{\partial \phi}{\partial t} + (u \cdot \nabla) \phi = -M\mu \quad \mu = \frac{\delta F}{\delta \phi} = f'(\phi) - \epsilon^2 \nabla^2 \phi$$

- Chemical potential μ
 - Naturally incorporate surface tension
- Require relatively small Δt due to stiff gradient energy term $\frac{1}{dx^2}$

Exponential integrators (Matrix Exponential)

$$\frac{\partial \phi}{\partial t} = L\phi + N(\phi) \Rightarrow \phi(t) = e^{Lt}\phi_0 + \int_0^t e^{L(t-\tau)}N(\phi(\tau))d\tau$$

- Stable with large Δt , accurate linear integration
- Requiring expensive matrix exponential
 - High cost in HPC (Memory, Communication)



< Phase-field models >

Hamiltonian simulation

$$i \frac{d}{dt} \psi = \hat{H} \psi \Rightarrow \psi = e^{-i\hat{H}t} \psi_0$$

- To solve **time-dependent Schrödinger** equation
- Matrix exponential time evolution natively
 - Removes HPC bottleneck

Requirements for Hamiltonian simulation from quantum computing

Requirement for Quantum Hamiltonian simulation

- Reformulation into Schrödinger-type equation
 - Unitary embedding of non-unitary operators
- Linearization of Nonlinear terms
 - Infeasible for Current NISQ devices
- Physical quantity depend on simulation
 - Not well-suited linearization strategy for fluid simulation

$$i \frac{d}{dt} \psi = \hat{H} \psi \neq \frac{d\phi}{dt} = A\phi$$

Shape
Imaginary number
Operators → Generally non-Hermitian

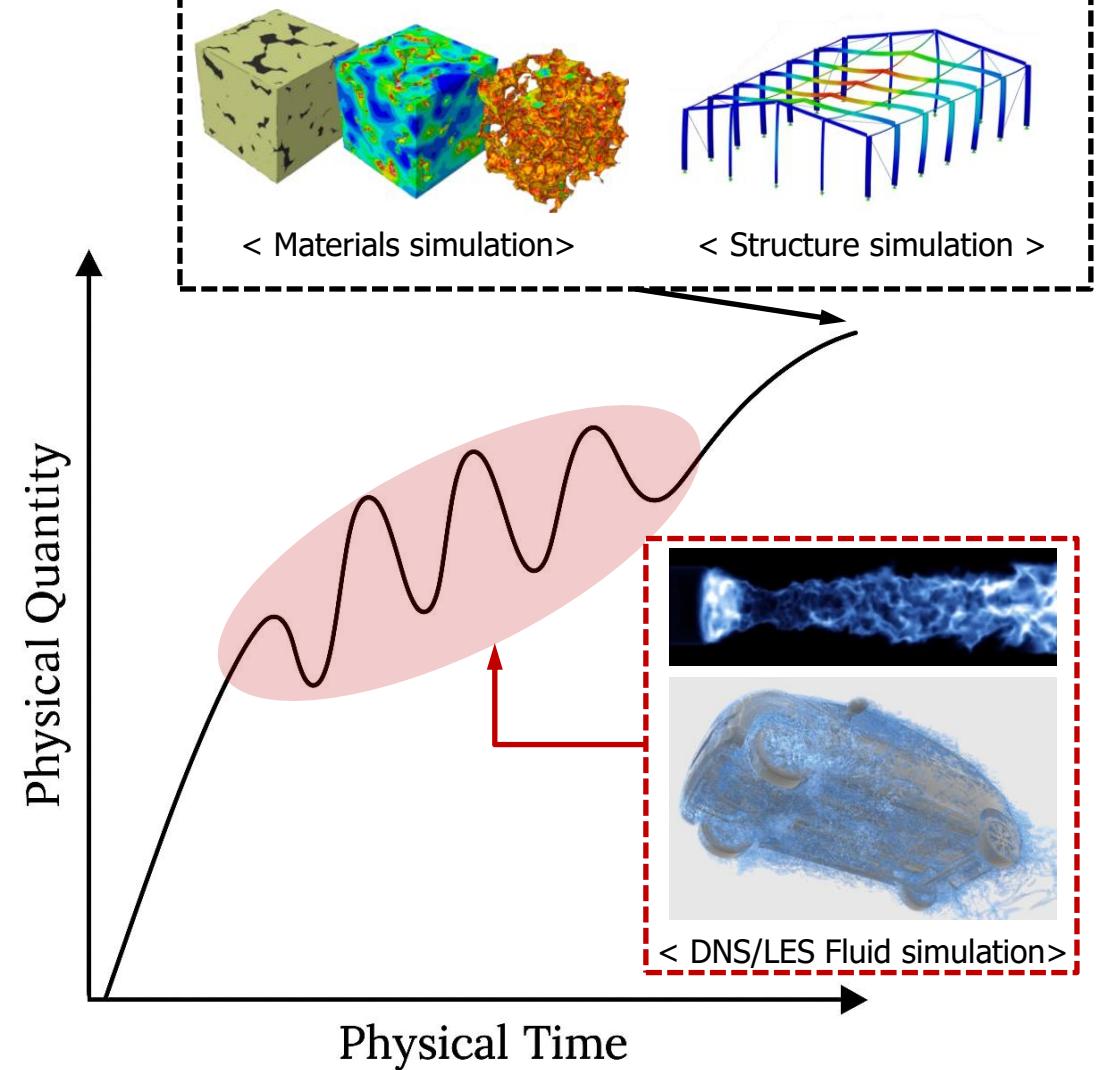
If $A = A^\dagger = (A^*)^T \rightarrow e^{-iAt}$ is Unitary

$$A = \begin{pmatrix} 2 & 2+i & 4 \\ 2-i & 3 & i \\ 4 & -i & 1 \end{pmatrix} \quad A^T = \begin{pmatrix} 2 & 2-i & 4 \\ 2+i & 3 & -i \\ 4 & i & 1 \end{pmatrix} \quad A^\dagger = \begin{pmatrix} 2 & 2+i & 4 \\ 2-i & 3 & i \\ 4 & -i & 1 \end{pmatrix}$$

< Example of Hermitian operator ($A = A^\dagger$) >

$$\begin{aligned} & \text{Series of } y_n \quad \text{Series of } \frac{dy_n}{dt} \\ & y_1 = \phi \quad \frac{dy_1}{dt} = \frac{d\phi}{dt} = \phi^2 = y_2 \\ & y_2 = \phi^2 \quad \frac{dy_2}{dt} = 2\phi \frac{d\phi}{dt} = 2\phi^3 = 2y_3 \\ & \vdots \quad \vdots \\ & y_9 = \phi^9 \quad \frac{dy_9}{dt} = 9\phi^8 \frac{d\phi}{dt} = 9\phi^{10} = 9y_{10} = 0 \\ & \vdots \quad \vdots \\ & y_n = \phi^n \quad \frac{dy_n}{dt} = n\phi^{n-1} \frac{d\phi}{dt} = n\phi^{n+1} = ny_{n+1} \end{aligned}$$

< Example of linearization (Carleman embedding) >



Quantum-Classical hybrid algorithm

Schrödingerisation (Warped Phase Transform)

- Dissipative system (Non-unitary) → conservative system (Unitary)
- Time-stepping strategy for linear treatment of nonlinear term
 - Time-integrating with Δt from quantum circuit
 - Updated nonlinear term from classical computer

Multi-scale/Nonlinear PDE

Time-stepping Hamiltonian simulation

WPT-based Schrödingerisation

+ Time-stepping Strategy

NISQ device (Integrated with HPC)

Proposed Algorithm (Time-stepping Hamiltonian simulation)

Warped Phase Transform (WPT)-based Schrödingerisation

- Reformulate classical PDEs into the Schrödinger equation by introducing an auxiliary variable p
- Operator decomposition: $\mathcal{A} = \mathcal{H}_1 + i\mathcal{H}_2$ naturally accommodates Nonlinear terms in Hermitian operator for Δt

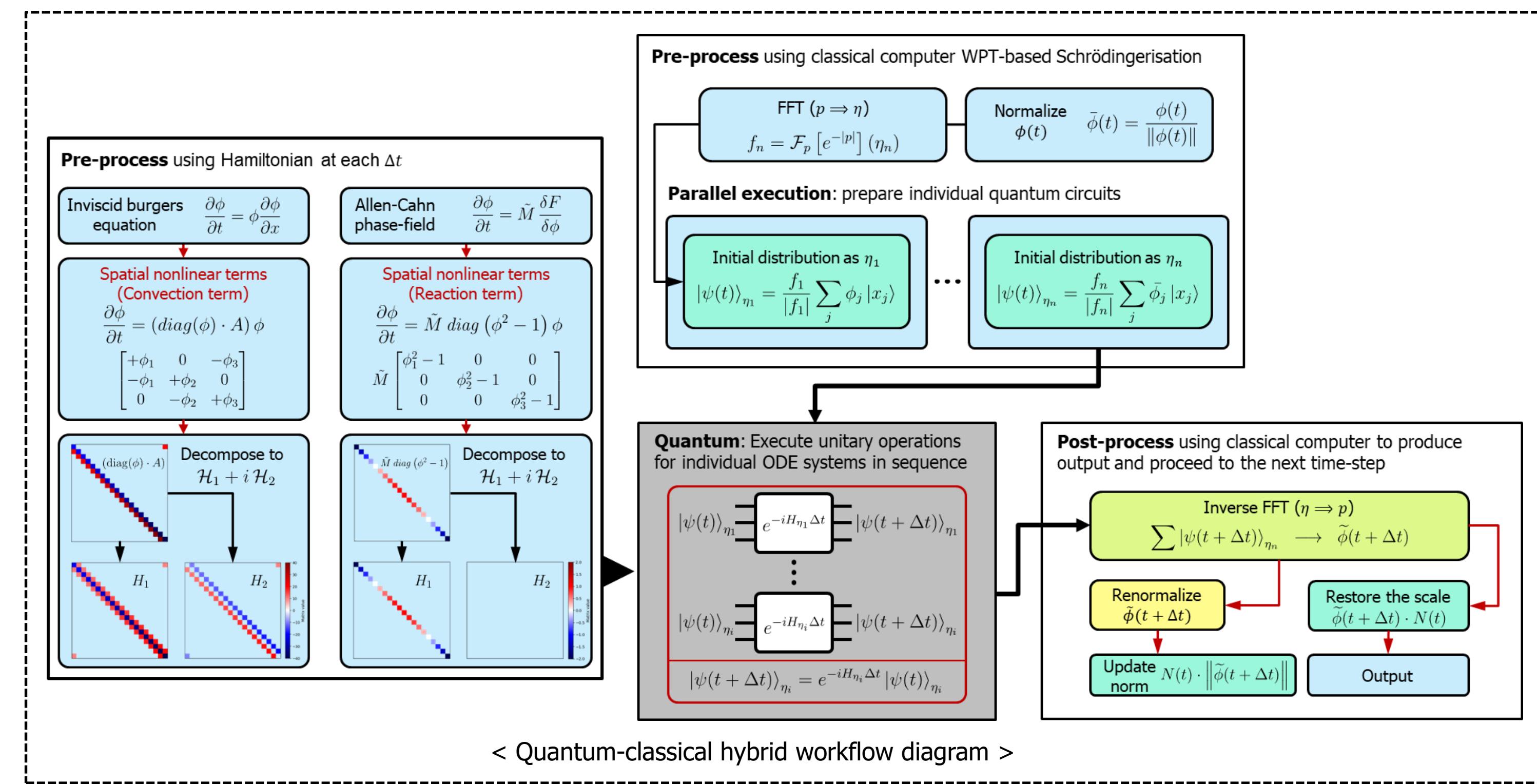
Schrödingerisation procedure

- PDE → ODE (spatial discretization \mathcal{A})
- Decomposition \mathcal{A} into Hermitian
- Warped Phase Transform ($\phi \rightarrow \omega$)
- Fourier transform ($\omega \rightarrow \psi$)

$$\begin{aligned} & \frac{d\phi}{dt} = \mathcal{A}\phi \quad \mathcal{A} = \mathcal{H}_1 + i\mathcal{H}_2 \\ & \frac{d\phi}{dt} = (\mathcal{H}_1 + i\mathcal{H}_2)\phi = \mathcal{H}_1\phi + i\mathcal{H}_2\phi \\ & \frac{d\omega}{dt} = -\mathcal{H}_1 e^{|p|} \frac{\partial \omega}{\partial p} + i\mathcal{H}_2 e^{|p|} \omega \\ & \frac{\partial \psi}{\partial t} = -\mathcal{H}_1 i\eta\psi + i\mathcal{H}_2\psi \\ & i \frac{\partial \psi}{\partial t} = (\eta\mathcal{H}_1 - \mathcal{H}_2)\psi = \mathcal{H}_\eta\psi \end{aligned}$$

Quantum-classical hybrid workflow

- Pre-process: WPT-based Schrödingerisation to transform classical PDEs and linearize Nonlinear terms, followed by transpilation into independent quantum circuits
- FFT instead of QFT for reducing qubit requirements for Warped phase variable (lowering entangling gates) → a practical alternative in NISQ devices by reducing overhead
- Quantum computing: Sequential evolution of each decoupled ODE system
- Post-process: Inverse FFT to return to the physical domain, preparation for next step (accumulate the original norm, re-normalizing the evolved state), and output



Numerical results (1D/2D Allen-Cahn Phase field model)

Experimental Setup

Quantum Framework: Simulators:

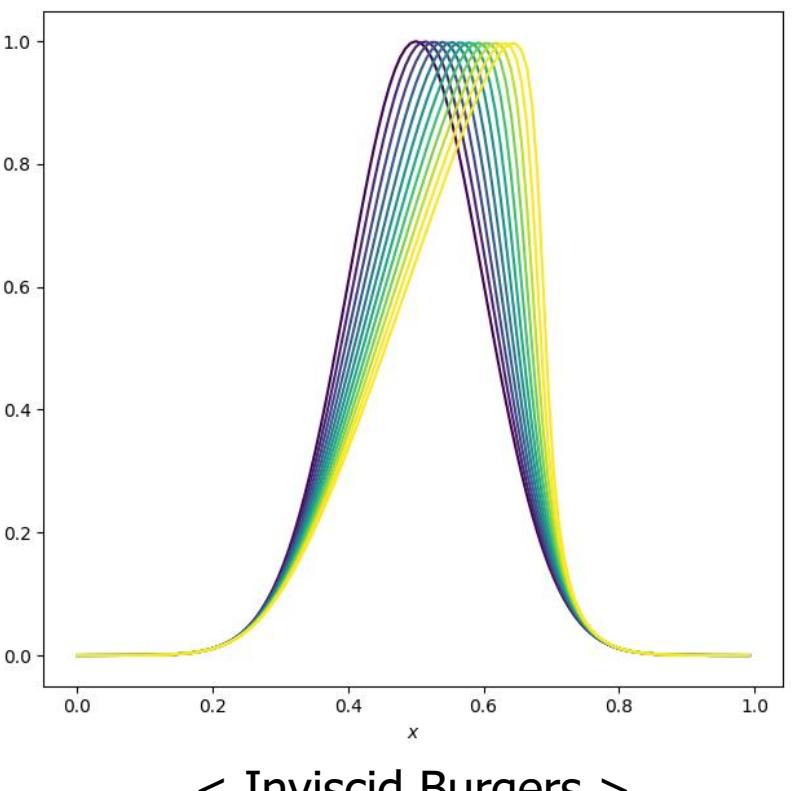
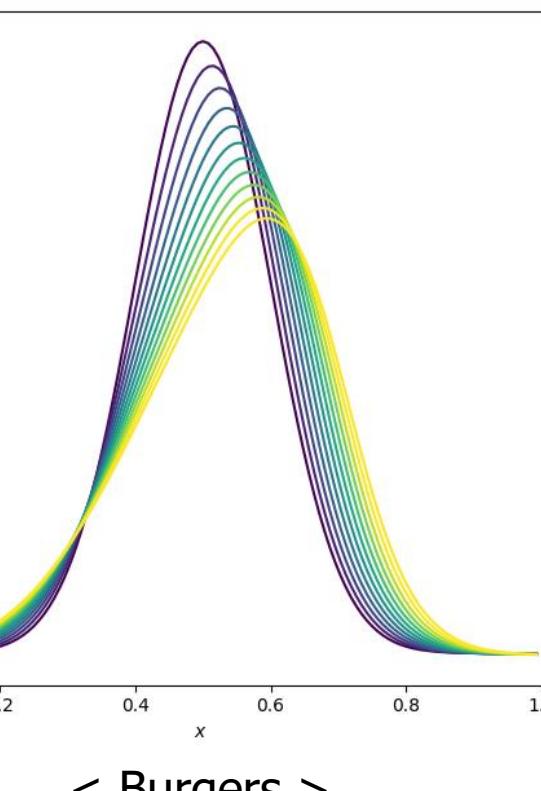
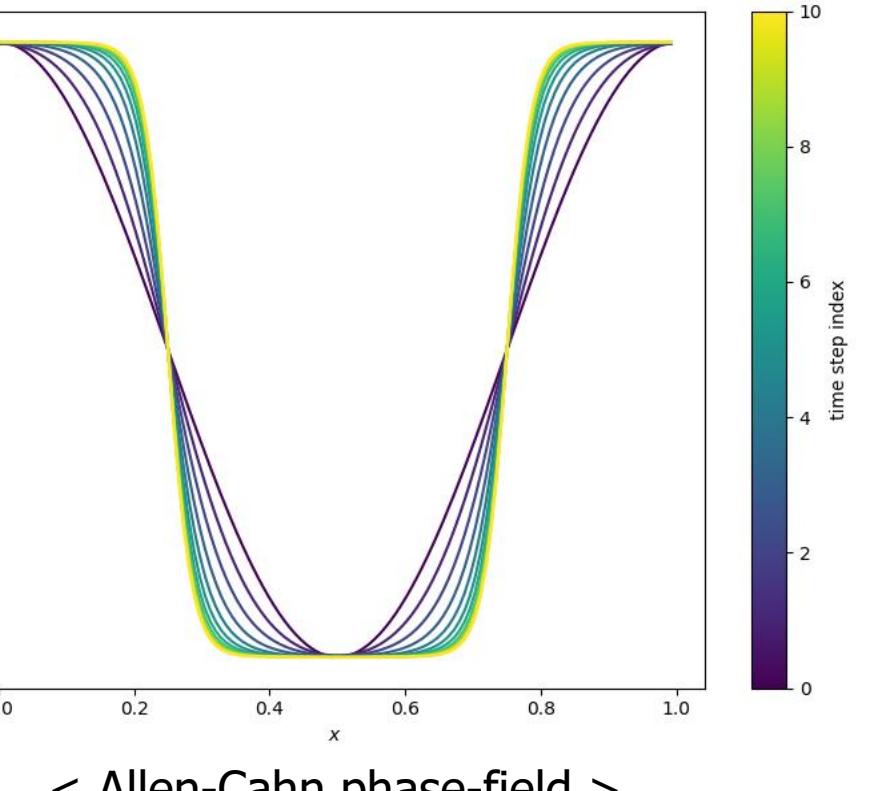
R-CCS Cloud:

- Qiskit v1.3.0
- Qiskit-Aer v0.15.0
- SciPy v1.11.4

- AMD EPYC 9684X (96 Cores @ 2.55 GHz)
- 768 GB DDR4 RAM
- 8 × NVIDIA A100 80 GB GPUs

1D Nonlinear equations (Burgers, Allen-Cahn phase field)

- Gaussian distribution for Burgers cases and single-period cosine for the Allen-Cahn phase-field
 - Only a 1st-order upwind scheme is used for Burgers equations
- Inviscid Burgers/Burgers → shock formation with and without diffusive effects.
- Allen-Cahn phase field → bi-phasic structure due to the nonlinear reaction term
- Nonlinear terms are effectively updated classically for accurate unitary evolution



2D Allen-Cahn phase field

- The results are based on 12 qubits, with 6 qubits for each axis ($p = 2^3$, auxiliary variable).
- A random noise distribution is used for the initial conditions, and the discretization scheme employs 2nd-order central differencing.
- The field evolves toward two energetically favorable states ($\phi = \pm 1$), while the diffusion term, scaled by ϵ^2 , smooths the interfaces between phases. In this simulation, ϵ was set to 0.01, resulting in a relatively sharp but finite interface thickness.
- As time progresses, the field separates clearly, revealing interface structures, and the solution stabilizes into a step-like profile—consistent with the expected Allen-Cahn dynamics

