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Hamiltonian Simulation for Allen-Cahn 
phase-field model by Quantum-
Classical Hybrid Approach

< Navier-stoke equations (Bubbly flow) >

⚫Phase-field (Allen-Cahn)

● Chemical potential 𝜇 
► Naturally incorporate surface tension

● Require relatively small ∆𝑡 due to stiff gradient energy term

⚫Exponential integrators (Matrix Exponential)

● Stable with large ∆𝑡, accurate linear integration

● Requiring expensive matrix exponential
► High cost in HPC (Memory, Communication)

𝜕𝝓

𝜕𝑡
+ 𝑢 ∙ ∇ 𝝓 = −𝑴𝜇 𝜇 =

𝛿𝐹

𝛿𝜙
= 𝑓′ 𝜙 − 𝜀2∇2𝜙

←
1

𝑑𝑥2

𝜕𝜙

𝜕𝑡
= 𝑳𝜙 + 𝑵 𝜙 𝜙 𝑡 = 𝑒𝑳𝑡𝜙0 + න

0

𝜏

𝑒𝑳(𝑡−𝜏)𝑵 𝜙 𝜏 𝑑𝜏⇒

⚫Hamiltonian simulation

● To solve time-dependent Schrödinger equation

● Matrix exponential time evolution natively
►Removes HPC bottleneck
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Which quantum algorithms could offer advantage for solving PDEs? (Especially, phase-field model)

⚫Algorithm for two-phase flow simulation
● Solve Navier-stokes (Momentum, Poisson Eqs.) and Scalar Transport (Density) Eq.

● Multi-scale phenomena → Large-gap on time-step (∆𝑡) between two regime

►Bulk flow advection-diffusion vs interfacial capillary microphysics

< Phase-field models >

< Algorithm of two-phase flow simulation >

Requirements for Hamiltonian simulation from quantum computing

Imaginary 
number

Operators → Generally 
non-Hermitian

Shape

If 𝐴 = 𝐴† = 𝐴∗ 𝑇  → 𝑒−𝑖𝐴𝑡 is Unitary

< Example of Hermitian operator 𝐴 = 𝐴†  >
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< Example of linearization (Carleman embedding) >

⚫Requirement for Quantum Hamiltonian simulation
● Reformulation into Schrödinger-type equation

►Unitary embedding of non-unitary operators

● Linearization of Nonlinear terms
►Infeasible for Current NISQ devices

TruncationTruncation

< DNS/LES Fluid simulation>

< Structure simulation >< Materials simulation>

● Physical quantity depend on simulation
►Not well-suited linearization strategy for fluid simulation

Quantum-Classical hybrid algorithm

⚫Schrödingerisation (Warped Phase Transform)
● Dissipative system (Non-unitary) → conservative system (Unitary)

● Time-stepping strategy for linear treatment of nonlinear term
► Time-integrating with ∆𝑡 from quantum circuit

► Updated nonlinear term from classical computer

Proposed Algorithm (Time-stepping Hamiltonian simulation)

× 𝑖 on LHS and RHS

Schrödingerisation procedure
● PDE → ODE (spatial discretization     )

● Decomposition into Hermitian

● Warped Phase Transform (𝝓 → 𝝎)

● Fourier transform (𝝎 → 𝝍)
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⚫Warped Phase Transform (WPT)-based Schrödingerisation
● Reformulate classical PDEs into the Schrödinger equation by introducing an auxiliary variable 𝑝

● Operator decomposition: naturally accommodates Nonlinear terms in Hermitian operator for ∆𝑡

< Quantum-classical hybrid workflow diagram >

⚫Quantum-classical hybrid workflow 
● Pre-process: WPT-based Schrodingerisation to transform classical PDEs and linearize Nonlinear terms, 

followed by transpilation into independent quantum circuits

● FFT instead of QFT for reducing qubit requirements for Warped phase variable (lowering entangling gates) 
→ a practical alternative in NISQ devices by reducing overhead

● Quantum computing: Sequential evolution of each decoupled ODE system

● Post-process: Inverse FFT to return to the physical domain, preparation for next step (accumulate the 
original norm, re-normalizing the evolved state), and output

Numerical results (1D/2D Allen-Cahn Phase field model)

Quantum Framework:
● Qiskit v1.3.0

● Qiskit-Aer v0.15.0

● SciPy v1.11.4

R-CCS Cloud:
● AMD EPYC 9684X (96 Cores @ 2.55 GHz)

● 768 GB DDR4 RAM

● 8 × NVIDIA A100 80 GB GPUs

Simulators:
● Noise-free (Statevector simulator)

● get_statevector (Qiskit) method

⚫Experimental Setup

⚫1D Nonlinear equations (Burgers, Allen-Cahn phase field)
● Gaussian distribution for Burgers cases and single-period cosine for the Allen–Cahn phase-field

► Only a 1st-order upwind scheme is used for Burgers equations

● Inviscid Burgers/Burgers → shock formation with and without diffusive effects.

● Allen-Cahn phase field → bi-phasic structure due to the nonlinear reaction term

● Nonlinear terms are effectively updated classically for accurate unitary evolution

< Inviscid Burgers > < Burgers > < Allen-Cahn phase-field >

T = 0 s T = 0.11 s T = 0.21 s T = 0.31 s

T = 0.41 s T = 0.51 s T = 0.61 s T = 0.71 s

⚫2D Allen-Cahn phase field
● The results are based on 12 qubits, with 6 qubits for each axis (𝑝 =  28, auxiliary variable).

● A random noise distribution is used for the initial conditions, and the discretization scheme 
employs 2nd-order central differencing. 

● The field evolves toward two energetically favorable states (𝜙 = ±1), while the diffusion term, 
scaled by 𝜖2, smooths the interfaces between phases. In this simulation, 𝜖 was set to 0.01, 

resulting in a relatively sharp but finite interface thickness.

● As time progresses, the field separates clearly, revealing interface structures, and the solution 
stabilizes into a step-like profile—consistent with the expected Allen–Cahn dynamics
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