Hamiltonian Simulation for Allen-Cahn

phase-field model by Quantum-
Classical Hybrid Approach
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Which quantum algorithms could offer advantage for solving PDEs? (Especially, phase-field model)

® Algorithm for two-phase flow simulation — @ Phase-field (Allen-Cahn)
« Solve Navier-stokes (Momentum, Poisson Egs.) and Scalar Transport (Density) Eq. i) SF , s
. Multi-scale phenomena — Large-gap on time-step (At) between two regime Fra (u-V)p =—Mu p= 56 f(¢)—e“Vgp

» Bulk flow advection-diffusion vs interfacial capillary microphysics _ _
« Chemical potential u
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£3 Time integration S ey . Stable with large At, accurate linear integration . To solve time-dependent Schrodinger equation
et ’ » Requiring expensive matrix exponential . Matrix exponential time evolution natively
< Algorithm of two-phase flow simulation > » High cost in HPC (Memory, Communication) » Removes HPC bottleneck

Quantum-Classical hybrid algorithm

® Requirement for Quantum Hamiltonian simulation ® Schrodingerisation (Warped Phase Transform)
« Reformulation into Schrodinger-type equation o Linearization of Nonlinear terms « Physical quantity depend on simulation « Dissipative system (Non-unitary) — conservative system (Unitary)
» Unitary embedding of non-unitary operators » Infeasible for Current NISQ devices » Not well-suited linearization strategy for fluid simulation « Time-stepping strategy for linear treatment of nonlinear term
» Time-integrating with At from quantum circuit
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® Warped Phase Transform (WPT)-based Schrodingerisation
« Reformulate classical PDEs into the Schrodinger equation by introducing an auxiliary variable p

. Operator decomposition: 4 = #, + i}, naturally accommodates Nonlinear terms in Hermitian operator for At : Quantum Framework: Simulators: | R-CCS Cloud: |
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:-“---S--;\“'-'-d-'““-“'-“E-“““-“-(]-“--“-““““-“-“-“““““““-“-“““““““-“-“-““““-““-“-““““““““-““E i e Qiskit-Aer v0.15.0 e get statevector (Qiskit) method e 768 GB DDR4 RAM i
}  Schrodingerisation procedure T R | SciPy v1.11.4 8 x NVIDIA A100 80 GB GPUs :
E e PDE — ODE (spatial discretization A ) i A=H, +iH, i i w(t,p) = e Ple(t) i i i * >ery * |
. \[/)Vecomdpgition TA intfo Hermitian i ‘ i L el = gy, i e
e et O_r>m1/;()¢ - @) i O b gow |} @ 1D Nonlinear equations (Burgers, Allen-Cahn phase field)
| L H = AJ;A i i ot dt a Ot i ; « Gaussian distribution for Burgers cases and single-period cosine for the Allen—Cahn phase-field
| dg _ Ag E : I Ow o 500 ] » Only a 1st-order upwind scheme is used for Burgers equations
1 1 — — e — S 1 . . . . . . .
| dt l L gy, = —A A G | . Inviscid Burgers/Burgers — shock formation with and without diffusive effects.
| do I 2 i i i i « Allen-Cahn phase field — bi-phasic structure due to the nonlinear reaction term
! _— = ) — ) e 1 4 R o o e S g 1 . . . . .
i dt I (Ho+iHa)o =Hido + iHadp <——"  omommomoooooes T | « Nonlinear terms are effectively updated classically for accurate unitary evolution
i aw 8(,(} P T e emmmmm e s e e e mm——— 1 i 10
| |p| o |p| |p| <3 : o° ! ! 1.0 4 1.00 A
] e!'— = —H,e™'— + tHoePlw I " :/ " —inp Ow| 0P l : /
I T B R A N |
i aw : ow > Ow - : i 0.50 -
! a . [ dw] _ w _, ] — Lo
i at — Hl an _|_ ZH2¢ - i ‘Fp [ap] . ap € dp p [w] ¢ i i - 0.25 é %5
i 5 1 X i on LHS and RHS i Ewiiix) B /OO 3 % (6 mp> dp = im i i ° | e 0001 g
| I = o I : 0.4 Fy 4 5
i o) = My A o — i

T T T T T T T T T T T T T T -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10

® Quantum-classical hybrid workflow
« Pre-process: WPT-based Schrodingerisation to transform classical PDEs and linearize Nonlinear terms,
followed by transpilation into independent quantum circuits

« FFT instead of QFT for reducing qubit requirements for Warped phase variable (lowering entangling gates) e 2D Allen-Cahn phase field
— a practical alternative in NISQ devices by reducing overhead

« Quantum computing: Sequential evolution of each decoupled ODE system

« Post-process: Inverse FFT to return to the physical domain, preparation for next step (accumulate the
original norm, re-normalizing the evolved state), and output

< Inviscid Burgers > < Burgers > < Allen-Cahn phase-field >

« The results are based on 12 qubits, with 6 qubits for each axis (p = 28, auxiliary variable).

« A random noise distribution is used for the initial conditions, and the discretization scheme
employs 2nd-order central differencing.

. The field evolves toward two energetically favorable states (¢ = x1), while the diffusion term,

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" scaled by €2, smooths the interfaces between phases. In this simulation, € was set to 0.01,
Pre-process using classical computer WPT-based Schrédingerisation resulting in a relatively Sharp but finite interface thickness.
: , « As time progresses, the field separates clearly, revealing interface structures, and the solution
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< Quantum-classical hybrid workflow diagram >
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