Spectrum-Aware Masking for EEG Signal Pretraining
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(D Introduction:

Electroencephalography (EEG) enables analysis of brain activity for tasks such as seizure detection and sleep staging. However,
noise, inter-subject variability, and complex frequency characteristics pose challenges for deep learning models. Existing methods
often rely on random masking or fixed pre-processing, neglecting the importance of frequency regions in representation learning
[1]. We propose a frequency-aware masking framework that ranks spectrogram patches by intensity and selectively masks mid-
frequency regions, leading to improved robustness and generalization. This improvement comes at the cost of increased
computational overhead, resulting in longer training time and higher memory usage.

@2 Method:

We propose a frequency-aware pretraining framework to analyze the role of different spectral regions in EEG representation
learning. Raw EEG signals are converted into STFT-based spectrograms and partitioned into frequency-oriented patches, which are
ranked by spectral intensity to reflect their relative importance. Based on this ranking, multiple frequency-aware masking strategies
are designed by selectively masking patches from different intensity ranges during pretraining. As a representative example, 20%
of patches are randomly masked from the top 10% highest-intensity regions. The encoder is pretrained [2] in a self-supervised
manner and fine-tuned for downstream EEG event classification on the six-class TUEV dataset[3].
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Fig.1. Overview of the proposed pretraining framework
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Fig.2. Randomly masking 20% of the Top10% intensity patches.
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Fig.3. Performance comparison across classes and masking strategies.

Table 2. Computational cost comparison * Frequency-domain modeling improves performance with increased

Masking Strategy GPUs Batch Size Epochs  Training Time computational cost.

Random Masking (50%) 8xA100 128 100 ~4.50 h

Top10% Random20% 8xA100 128 100 ~5.10 h * Effective frequency learning is reflected by sensitivity to spectral
Middle 30-60% 8xA100 128 100 ~5.30 h masking.

Middle 40-70% 8xA100 128 100 ~536 h

Bottom 30% 8xA100 128 100 ~4.90 h

* Current EEG foundation models are limited by frequency feature
extraction rather than model scale.
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