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Introduction Multi-objective Optimization Method
@ Due to growth of computational . Heuristic Methods; First cum first serve (FCFS) | Genetic Algorithm
demand, an effective resource server

» Because of simplicity, adaptability, and
iInherent ability to explore large, complex
solution effectively, GA is used at first [4].

L = Multi objective optimization methodology; (1) GA,
management system required in next (2) NSGA-III, and (3) Bayesian

generation data center.

@ Optimization for resource (CPU only) = Surrogate modelling based Multi objective
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_ _ _ _ TR% Y " :Vgﬁ:iggs‘: Genetic algorithm (x) , (x)
allocation in a static server using optimization methodology vanegee S I/ = U-(o) } = lmin, energy consame(x))

. . . | T —

single objective GA based [1-2]. Table 3 : Comparison among various optimizing algorithm. [a i B / f0 ) |

€ Development of Energy-aware and e Output {(x) = {fz(x)} ;

- - \___E._/ ! ' '
load-balanced virtual machine (VM) Type Evolutionary Probabilistic ~ Model- Multi- | Objective functions
placement schemes [3]. based  objective | mize fg* Selectr
m Wl m g I mintmize 1x ' rossover

<Significance of this study> gses t No Yes Yes  Hybridized | . Motaton
Multi-obiective: Max. heteroaeneous HITogate _ _ | Fig. 2 GA based optimization for resource allocation.
. J : : g Output Single Single Few Pareto Front |!

d mi £ 0 — Number of CPUs, G — Number of GPUs, D —
resource ahd min. power consumption. Strength Global Efficient Fast Balanced i pyration of VM, S — Number of sockets, N — Number of
.Dynamic Server ava”abi”ty Search Sampling  Prediction  Trade-off i Servers, T — Start time, E — Energy consumption.

Optimizing Methodolo . - I .
P 5 M | ' Heuristic methods ‘Metrix parameters
Genetic Algorithm A ' Heurist; hod il Recove b | 1\ /A i
QA VM is allocated to a server s at a time ¢ only when _somes I ) ef[mSt'C ; mtet 0ds Ir:nc?II:nSy | cmen 2 iVarlous parameters are
[ Set Best"Score =0 ! I rS 'CU m I rS Se rve
CPU; < CPU,(t) and GPU; < GPU,(t) = - (FEFS) rmlear jused to compare the
: : . o . <> ' are used here. st oder ) 10ptimizing results [5].
Fitness function guiding GA optimization is defined as; e . > FCES are used for '» Makespan : Finishing
Check for m
[ Evaluate each |

F = NVMS + CZ(UCPU + UGPU) time of the last task

Nyyms= number of assigned VMs, Urpy and Ugpy =

‘)[ J complex problems where
finding the perfect answer [Agjglgglgb;gr:;ﬁ
s too slow like cloud
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[ Sort by Fitness

» Throughput : Total
number of VMs

: 0 200 400 600 800 1000 1200 1400

the assigned CPU Time [sec]
will be used and : Fig. 5 Number of VM, assign to each server.

. Reason for high variance in GA, for each
Ms random start time 2 its minimum !4In GA, fitness score is evolving and

'"start and is assianed to a random server.. Calculated by “Fitness function formula®.

of VMs successfully assigned to server. 1GA yields a higher throughput than
din FCFS, all VMs assigned instantly and! the FCFS.

it's not evolving, so it is a straight line. | QGA consolidate workloads to utilize
servers more efficiently, whereas
FCFS leave resources idle.

normalized utilization ratios of CPU, and GPU, & a = 0.5.
> Allowable waiting time ¢, (min) based on priority p [ e ]
P =3, Low = 30; P= 2, ty10w = 360; p =1, ;0w = 900 mMin G Fig. 4 FCFS |/ 5(C:G) )
> POPULATION =30; GENERATION =60; MUTATION =0.35Fig. 3 GA flow chart. Implemented. dow chart == SLAWM SN, V)t
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Notes - Optimizing Server ' Fitness Score " Metrix Comparison
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