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We show that LTI RRMs are algebraically equivalent to DL 1D Convolution layers.
Leveraging this equivalence, we propose DiffRoute, an LTI RMM implementation with following features:
•  Generality: The same implementation generalizes all LTI schemes (Muskingum, Linear wave, etc.). 

Any LTI scheme can be integrated with minimum code.
•  Differentiability: Integration to Automatic Differentiation frameworks allow for efficient computations 

of gradients, enabling joint learning of different hydrological model components
•  Speed & Scalability: Leveraging GPU parallel processing power, we achieve global climatic scale in 

20s on a single GPU (85 years, 6M reaches). This was allowed by a combination of (1) Block-Sparse 
Computations (2) Fourier Analysis and (3) Tree Partitioning techniques

Contributions
DiffRoute’s expressivity is currently limited by two main assumptions:
Linear Time Invariance: Computational optimizations leverage the LTI property of the system. This 
prevents us from expressing non-linear phenomena like dynamic flow velocity, backwater effects, flood-
plain interactions, etc. 
Tree-shaped River Networks: The current implementation does not allow to represent river network 
branching out downstream. Extension from tree structure to Directed Acyclic Graphs is possible.

In addition, while we have demonstrated end-to-end learning on several problem settings, the question of 
identifiability of hydrological parameters remains open, especially at global scale given the very sparse 
and noisy nature of global observations

Limitations and Future Work

Use Cases

Basin Scale

(b) IRF Aggregation (c) Routing(a) River Graph
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LTI RRM = Convolution Layers

O
ve

rv
ie

w
M

et
ho

ds

(a) Forward simulation (b) Learning routing–physics relations

(c) Calibration of routing parameters (d) End-to-end learning of runo! and routing

Two-stages computation architecture

(a) Study basin and river network (37
catchments) (b) Model variables per catchment

ClusteringLeveraging Block Sparsity

(a) Graph structure (b) Reachability matrix (c) Block-sparse kernel

Computations become 
intractable in deep river 
systems.

We segment such deep 
river systems into clusters 
of manageable size

National Scale Global Scale

(a) Global NSE Map (b) Zoom over the Amazon

(c) Time Series of river discharges at highlighted points

(a)  NSE Map over the Amazon (b) K Parameter scatter plot

(c) Time Series of river discharges at highlighted points

(a) Training and test basins (b) Learned k on the test basin

(c) Reference relation k = f(U,D) (d) Learned relation k = fω(U,D)
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We compare our model results to 
TodayEarth and GradesDL river 
discharge outputs on our proposed 
dataset.

NSE Results for different approaches

Use-case D: Applying the end-to-end learning methodology at national 
scale allows us to produce accurate and physically consistent spatially 
distributed river discharge predictions

We train and evaluate our system (Runoff Generation LSTM + 
DiffRoute) on 500 in-situ river discharge measurements across 
Japan. Generalization in space is investigated.

Use-case B: AD allows for efficient automated calibration by gradient 
descent. We demonstrate efficient calibration over the Amazon basin.

Use-case C: Routing model 
parameters can also be inferred from 
physical properties of the river 
channels

We train a parameterized MLP f to 
regress Muskingum routing parameter 
k from channel distance D and 
upstream drainage area U

Use-case A: We demonstrate the scalability of DiffRoute by reproducing 
the GEOGlows V2 simulation, routing 85 years of ERA5 input runoff 
through 6M reaches in 20s on a single GPU chip.The output matches the 
original simulation with NSE of .9996.

Use-case D: End-to-end learning (runoff generation LSTM + DIffroute) 
from a single downstream gauge supervision

End-to-end learned dynamics outperform lumped LSTM baseline

End-to-end learning prevents routing model parameter estimation from 
collapsing to instantaneous dynamics

We leverage the block-sparse structure of tree’s transitive closure matrix 
to accelerate computations

Automatic Differentiation allows for a variety of learning use-case


