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DiffRoute: Global Climatic Scale River Routing in less than a minute

RIKEN RCCS, RIKEN iThems, X-LMD

We show that LTI RRMs are algebraically equivalent to DL 1D Convolution layers.
Leveraging this equivalence, we propose DiffRoute, an LTI RMM implementation with following features:

- Generality: The same implementation generalizes all LTI schemes (Muskingum, Linear wave, etc.).
Any LTI scheme can be integrated with minimum code.

- Differentiability: Integration to Automatic Differentiation frameworks allow for efficient computations
of gradients, enabling joint learning of different hydrological model components

- Speed & Scalability: Leveraging GPU parallel processing power, we achieve global climatic scale in
20s on a single GPU (85 years, 6M reaches). This was allowed by a combination of (1) Block-Sparse

Computations (2) Fourier Analysis and (3) Tree Partitioning techniques

LTI RRM = Convolution Layers
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Leveraging Block Sparsity
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We leverage the block-sparse structure of tree’s transitive closure matrix
to accelerate computations
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(a) Graph structure

Basin Scale
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(b) Reachability matrix
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(c) Block-sparse kernel

Use-case D: End-to-end learning (runoff generation LSTM + Dlffroute)
from a single downstream gauge supervision
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(a) Study basin and river network (37
catchments)
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(b) Model variables per catchment

End-to-end learned dynamics outperform lumped LSTM baseline
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Two-steps

Pure Lag

Linear Reservoir
Muskingum
Nash Cascade

Linear Diffusive Wave (ITayami)

0.905 £ 0.005
0.921 + 0.003
0.910 £ 0.005
0.919 £+ 0.008
0.923 + 0.003

0.896 £+ 0.002

0.888 = 0.004
0.893 + 0.004
0.893 £+ 0.004
0.892 + 0.004
0.874 + 0.005

NSE Results for different approaches

End-to-end learning prevents routing model parameter estimation from
collapsing to instantaneous dynamics
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Limitations and Future Work

DiffRoute’s expressivity is currently limited by two main assumptions:
Linear Time Invariance: Computational optimizations leverage the LTI property of the system. This
prevents us from expressing non-linear phenomena like dynamic flow velocity, backwater effects, flood-

plain interactions, etc.

Tree-shaped River Networks: The current implementation does not allow to represent river network
branching out downstream. Extension from tree structure to Directed Acyclic Graphs is possible.

In addition, while we have demonstrated end-to-end learning on several problem settings, the question of
identifiability of hydrological parameters remains open, especially at global scale given the very sparse
and noisy nature of global observations
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Clustering

Computations become
intractable in deep river

systems.

We segment such deep
river systems into clusters
of manageable size
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Use-case D: Applying the end-to-end learning methodology at national
scale allows us to produce accurate and physically consistent spatially
distributed river discharge predictions

AL,
w& "Q i}"f

Ssenrge (T am)

We train and evaluate our system (Runoff Generation LSTM +
DiffRoute) on 500 in-situ river discharge measurements across

Japan. Generalization in space is investigated.

We compare our model results to
TodayEarth and GradesDL river
discharge outputs on our proposed

dataset.
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Two-stages computation architecture
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Use Cases

e

. L%
Distance to the median K5E

=3 < S =] -3 o
w ~ L ’
Medlan ANSE

e
-

5 ©

(c) Calibration of routing parameters

Global Scale
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Automatic Differentiation allows for a variety of learning use-case

Stage 1

(d) End-to-end learning of runoff and routing

Use-case A: We demonstrate the scalability of DiffRoute by reproducing
the GEOGlows V2 simulation, routing 85 years of ERA5 input runoff

through 6M reaches in 20s on a single GPU chip.The output matches the

original simulation with NSE of .9996.
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(a) Global NSE Map
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Use-case B: AD allows for efficient automated calibration by gradient
descent. We demonstrate efficient calibration over the Amazon basin.
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Use-case C: Routing model
parameters can also be inferred from
physical properties of the river

channels

We train a parameterized MLP fto

regress Muskingum routing parameter

k from channel distance D and
upstream drainage area U

Simultation K (10*s)
(b) K Parameter scatter plot
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