

DiffRoute: Global Climatic Scale River Routing in less than a minute

Tristan Hascoet, Victor Pellet, Takemasa Miyoshi
RIKEN RCCS, RIKEN iThems, X-LMD

Overview

Contributions

We show that LTI RRM are algebraically equivalent to DL 1D Convolution layers.

Leveraging this equivalence, we propose DiffRoute, an LTI RMM implementation with following features:

- Generality:** The same implementation generalizes all LTI schemes (Muskingum, Linear wave, etc.). Any LTI scheme can be integrated with minimum code.
- Differentiability:** Integration to Automatic Differentiation frameworks allow for efficient computations of gradients, enabling joint learning of different hydrological model components
- Speed & Scalability:** Leveraging GPU parallel processing power, we achieve global climatic scale in 20s on a single GPU (85 years, 6M reaches). This was allowed by a combination of (1) Block-Sparse Computations (2) Fourier Analysis and (3) Tree Partitioning techniques

Limitations and Future Work

DiffRoute's expressivity is currently limited by two main assumptions:

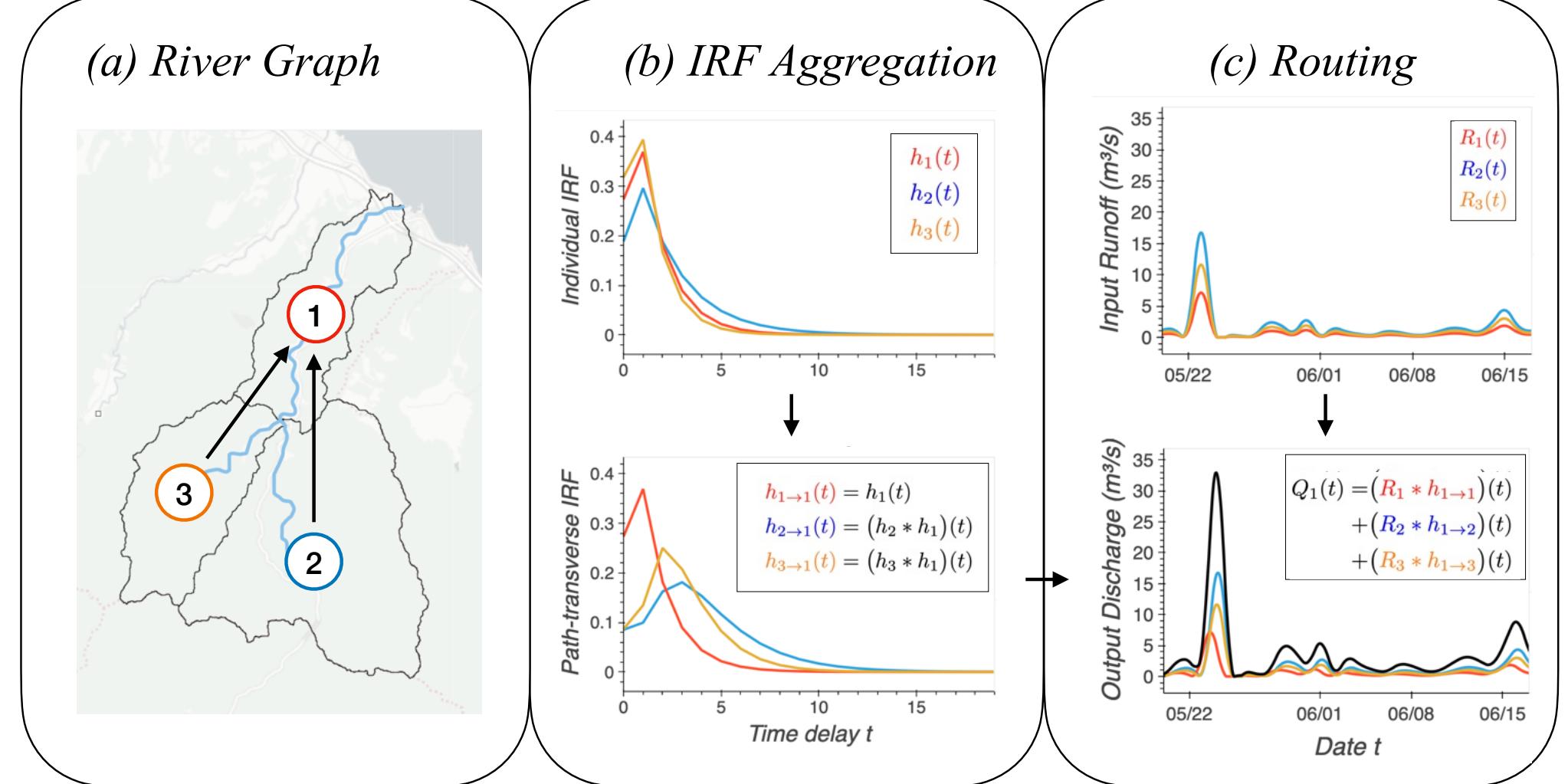
Linear Time Invariance: Computational optimizations leverage the LTI property of the system. This prevents us from expressing non-linear phenomena like dynamic flow velocity, backwater effects, floodplain interactions, etc.

Tree-shaped River Networks: The current implementation does not allow to represent river network branching out downstream. Extension from tree structure to Directed Acyclic Graphs is possible.

In addition, while we have demonstrated end-to-end learning on several problem settings, the question of **identifiability** of hydrological parameters remains open, especially at global scale given the very sparse and noisy nature of global observations

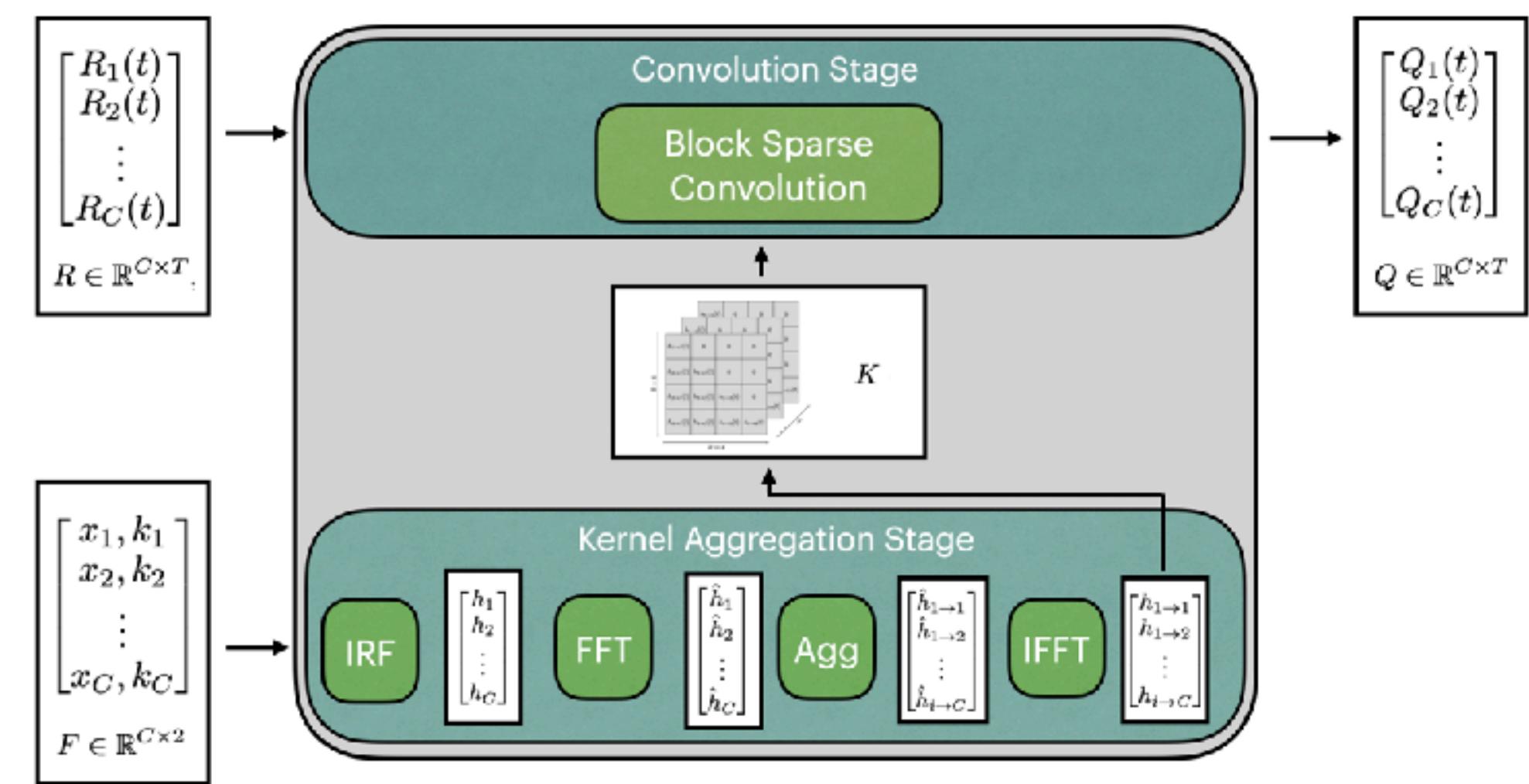
Methods

LTI RRM = Convolution Layers



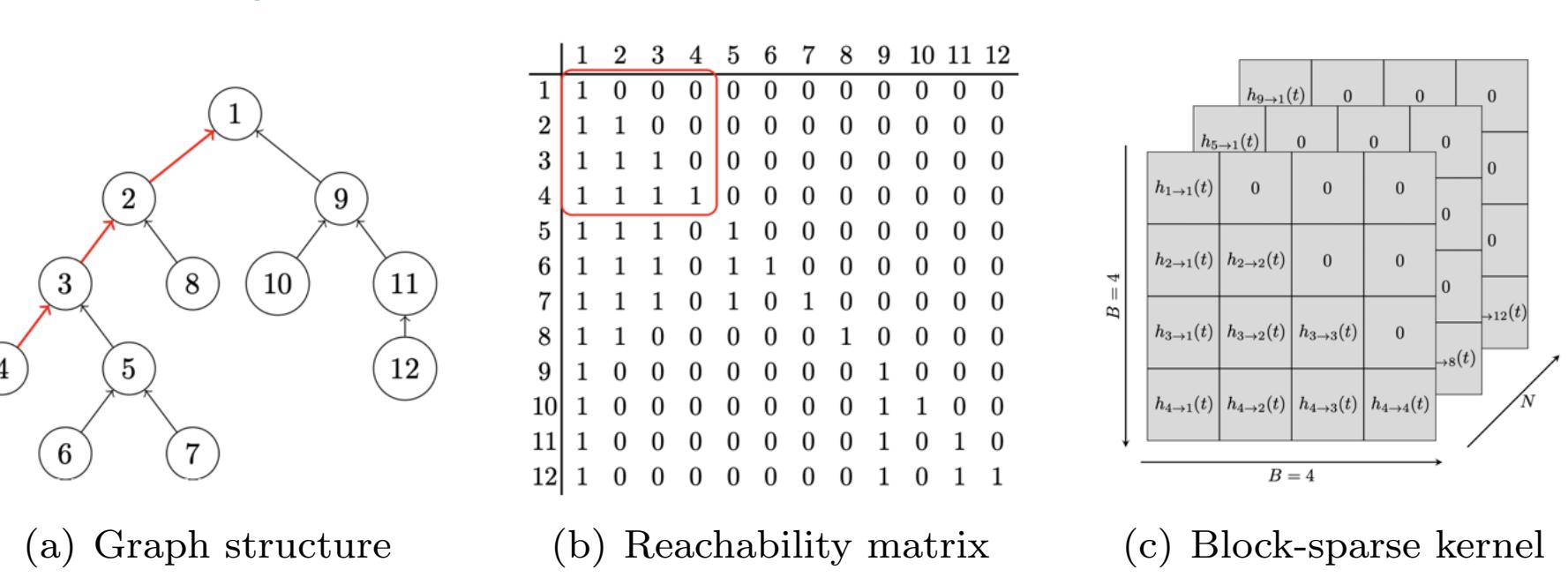
Model	Parameter F	IRF Formula h
Pure Lag	Δt : lag (time steps)	$h(t) = \max\{1 - t - \Delta t , 0\}$
Linear Reservoir	r : residence time dt : model time step	$h(t) = x(1 - x)^t$, with $x = \frac{1}{1 - \frac{r}{dt}}$
Nash Cascade	r : residence time n : number of reservoirs dt : model time step	$h(t) = \binom{t+n-1}{t} x^n (1-x)^t$ with $x = \frac{1}{1+\frac{r}{dt}}$.
Muskingum	x : weighting coefficient k : storage time constant dt : model time step	$h(t) = \begin{cases} C_0, & t = 0, \\ (C_1 + C_2 C_0) C_2^{t-1}, & t \geq 1, \\ \text{with } C_0 = \frac{dt}{D_c}, C_1 = \frac{dt}{2} + \frac{kx}{D_c}, C_2 = (1-x) - \frac{dt}{2}, \text{ and } D_c = k(1-x) + \frac{dt}{2}. \end{cases}$
Linear Diffusive Wave (Hayami)	L : channel length D : hydraulic diffusivity c : wave celerity	$h(t) = \frac{c}{2\sqrt{4\pi D^3}} \exp\left(-\frac{(L-ct)^2}{4Dt}\right)$

Two-stages computation architecture



Leveraging Block Sparsity

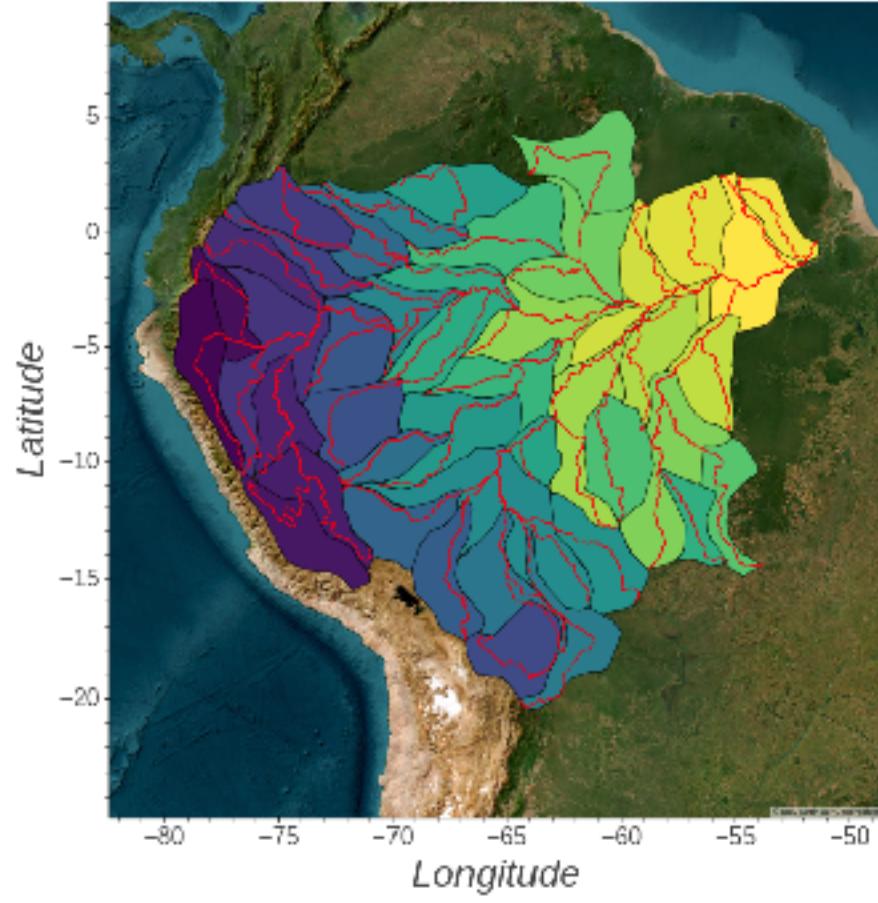
We leverage the block-sparse structure of tree's transitive closure matrix to accelerate computations



Clustering

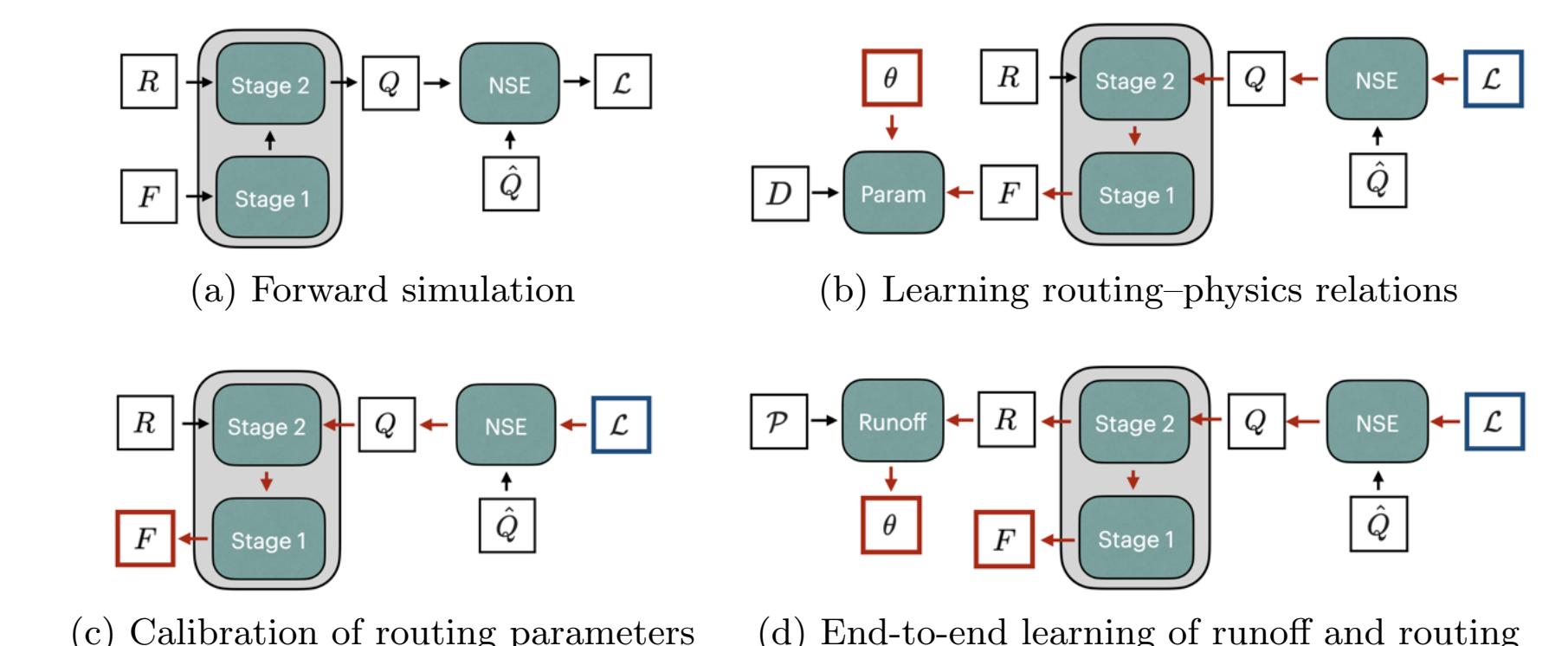
Computations become intractable in deep river systems.

We segment such deep river systems into clusters of manageable size



Use Cases

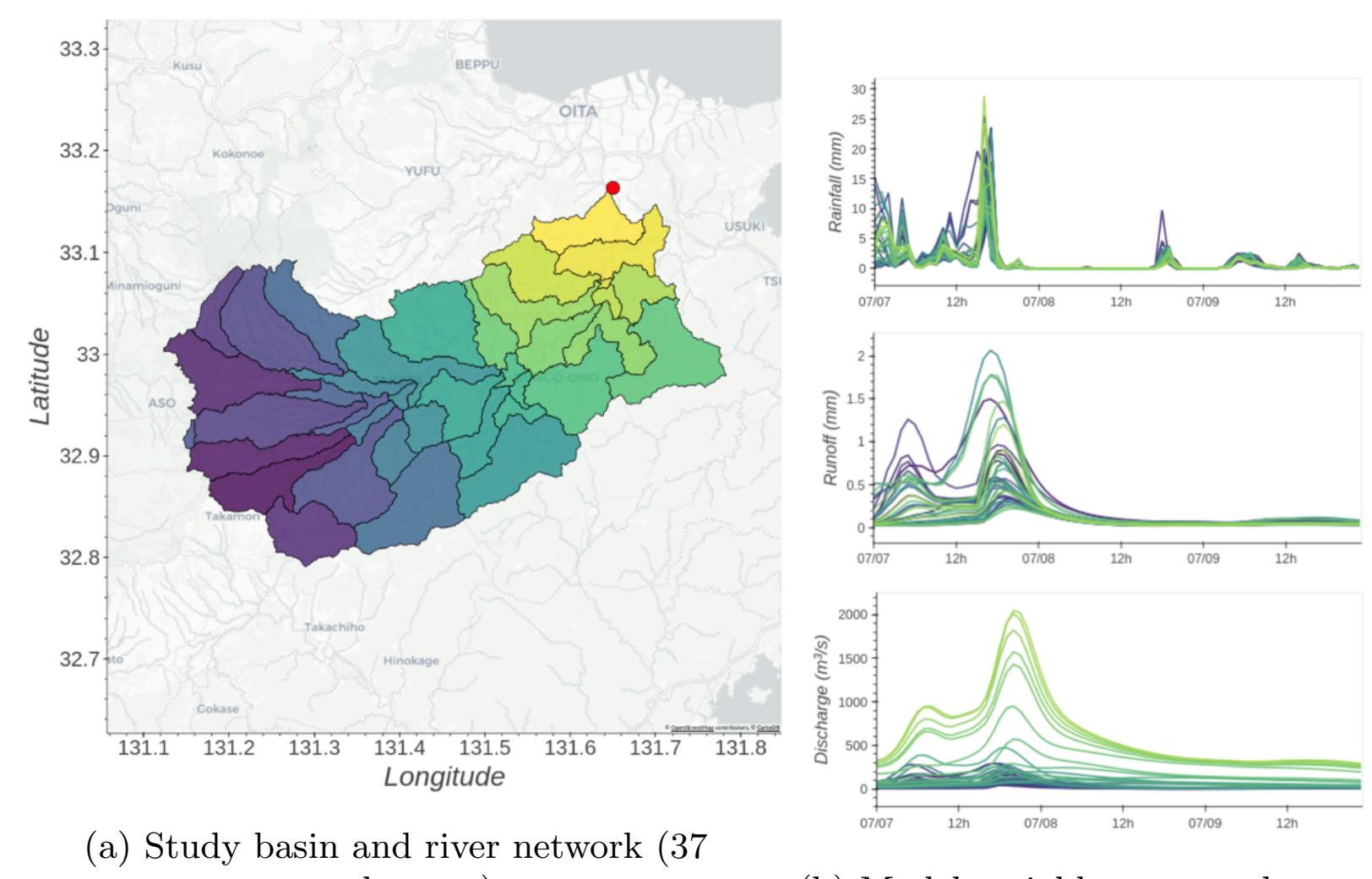
Automatic Differentiation allows for a variety of learning use-case



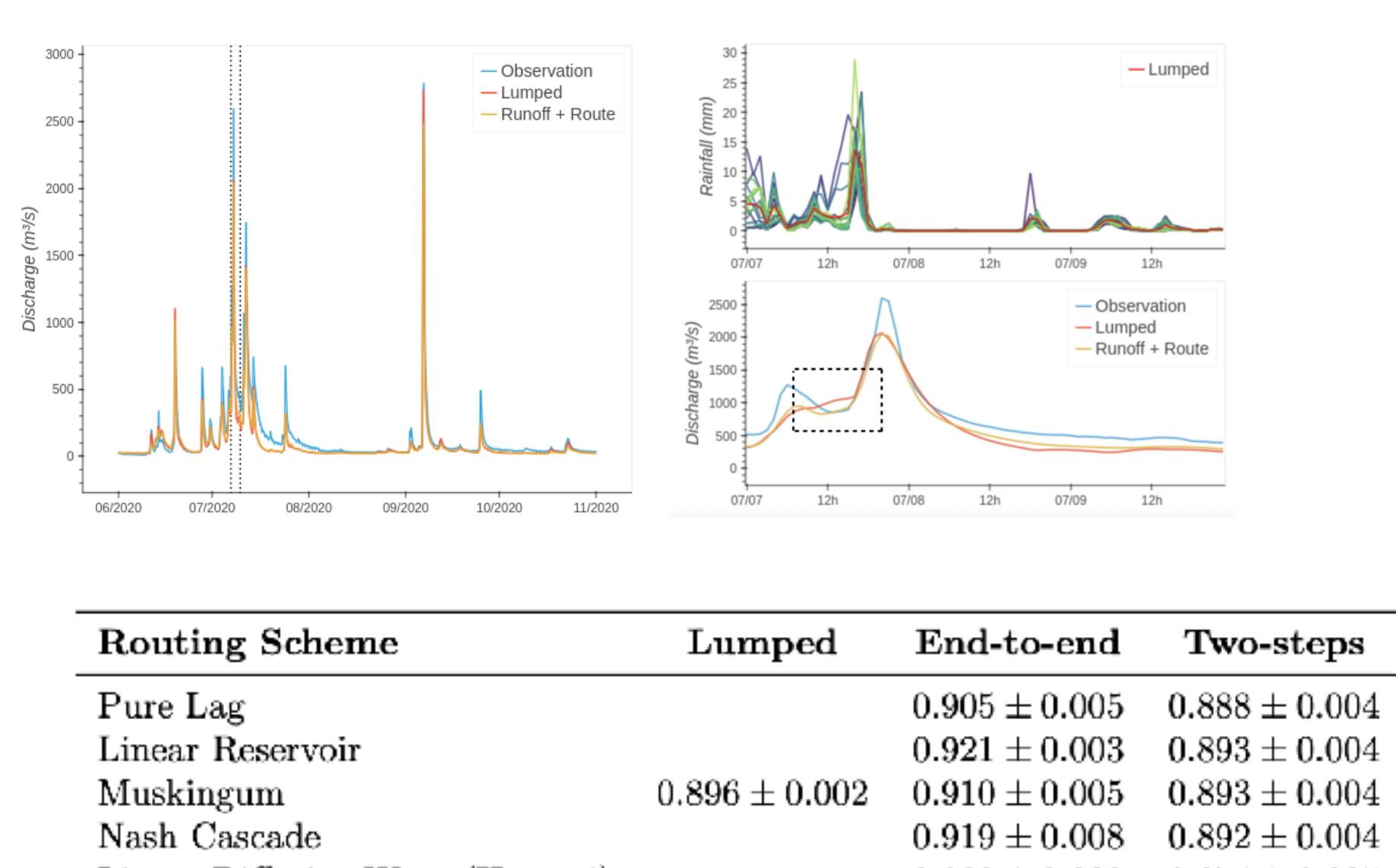
Results

Basin Scale

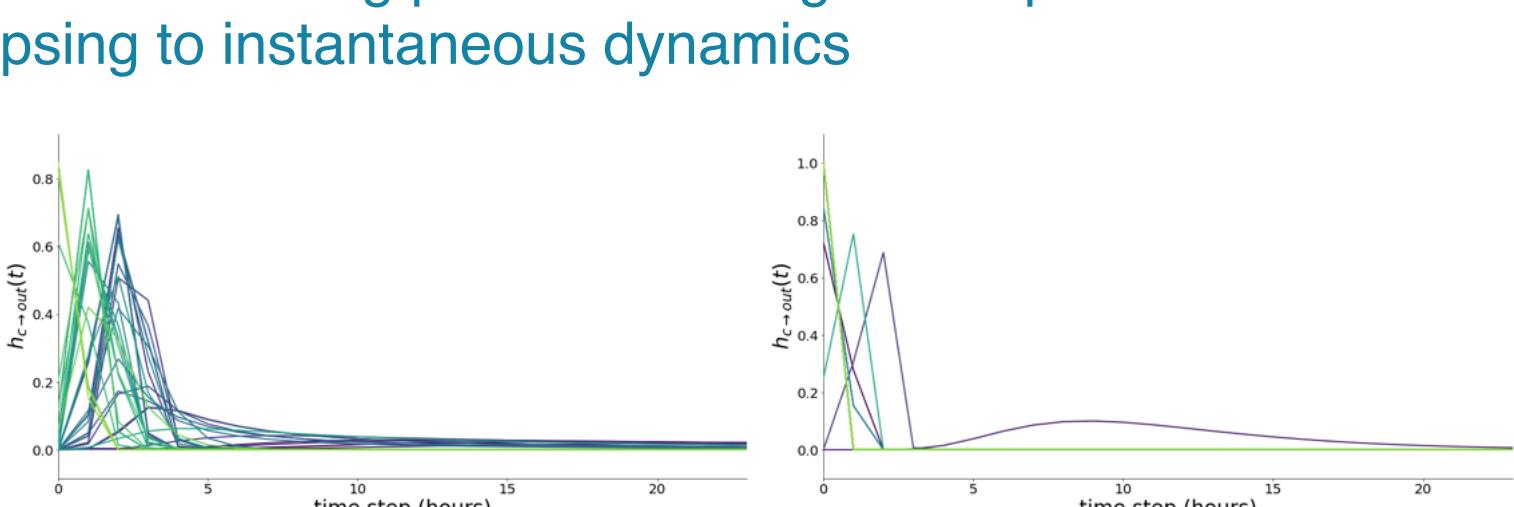
Use-case D: End-to-end learning (runoff generation LSTM + Diffroute) from a single downstream gauge supervision



End-to-end learned dynamics outperform lumped LSTM baseline

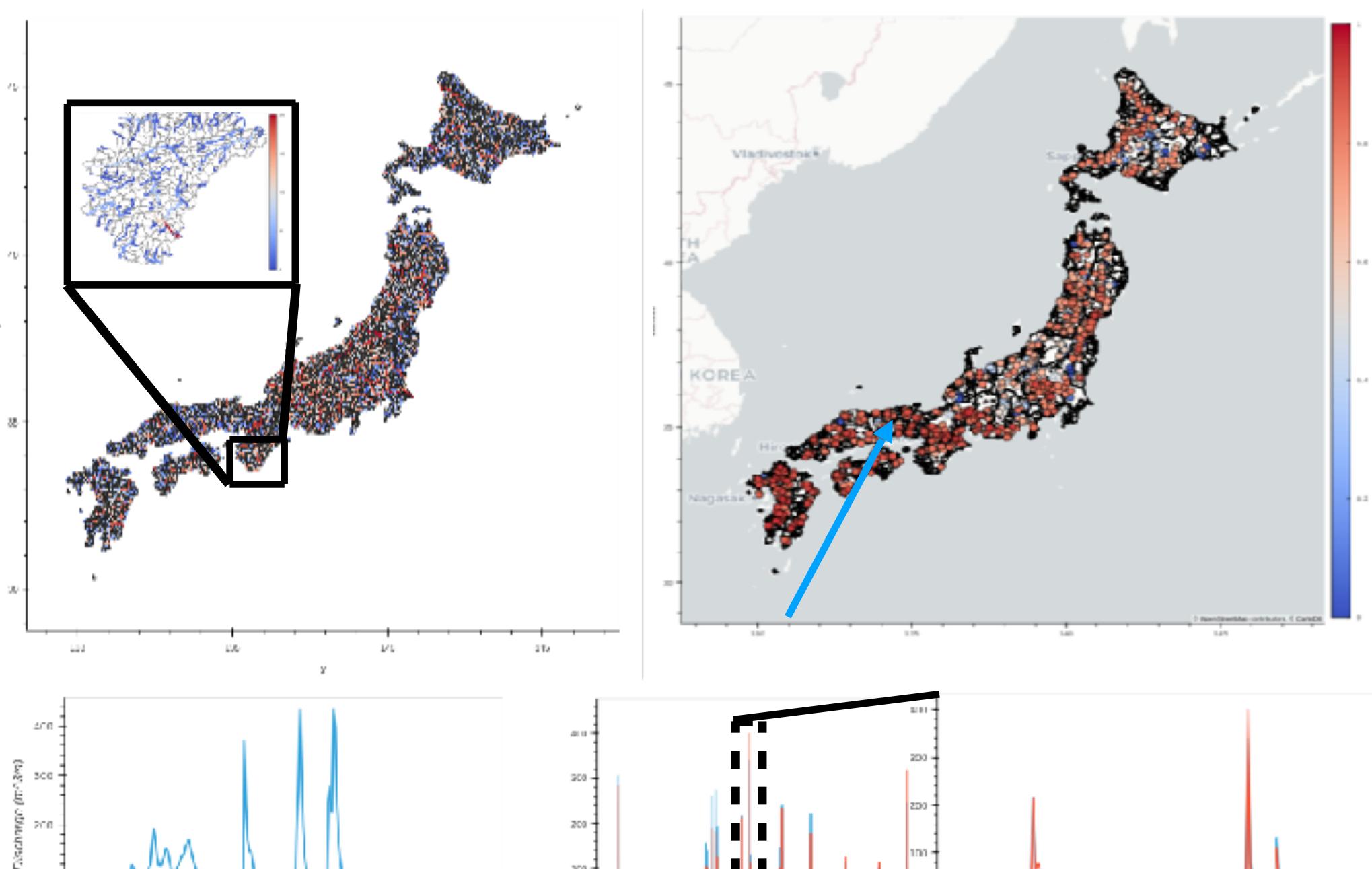


NSE Results for different approaches
End-to-end learning prevents routing model parameter estimation from collapsing to instantaneous dynamics



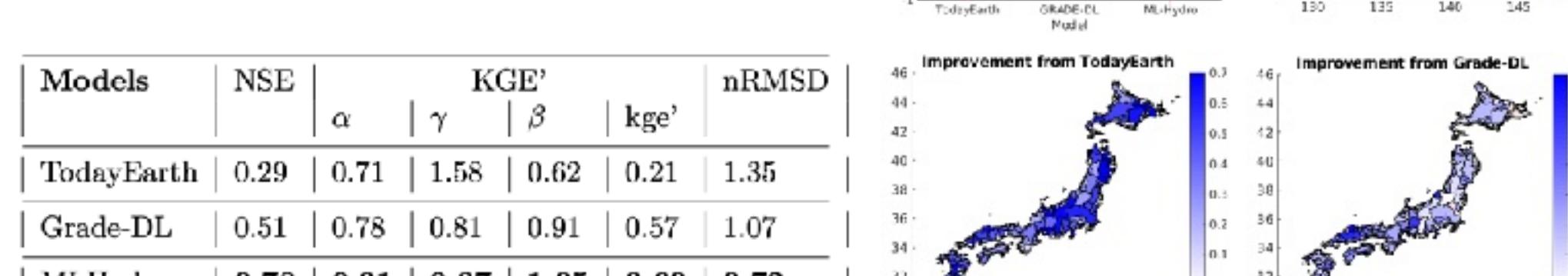
National Scale

Use-case D: Applying the end-to-end learning methodology at national scale allows us to produce accurate and physically consistent spatially distributed river discharge predictions



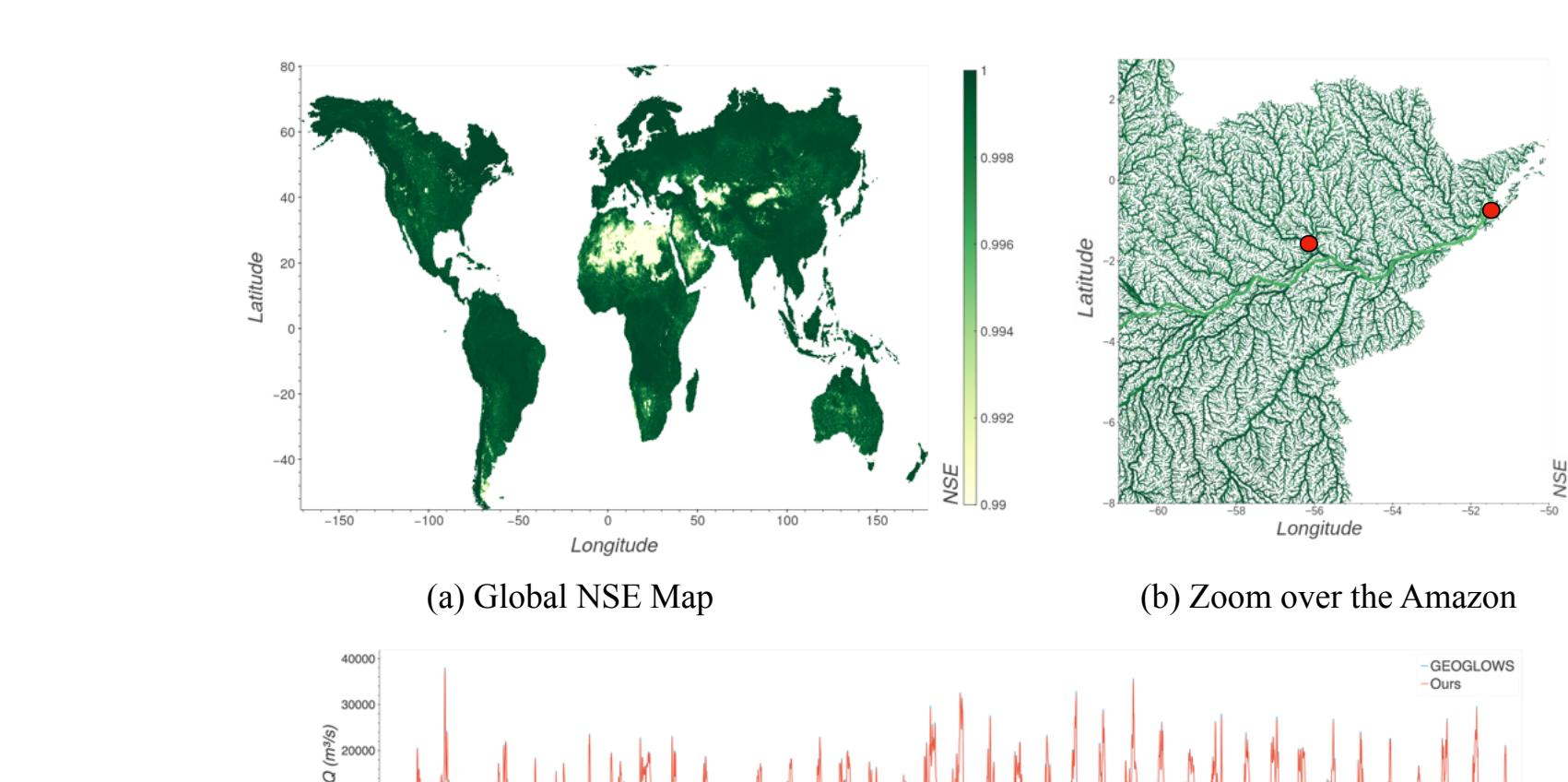
We train and evaluate our system (Runoff Generation LSTM + DiffRoute) on 500 in-situ river discharge measurements across Japan. Generalization in space is investigated.

We compare our model results to **TodayEarth** and **GradesDL** river discharge outputs on our proposed dataset.



Global Scale

Use-case A: We demonstrate the scalability of DiffRoute by reproducing the GEOGloWS V2 simulation, routing 85 years of ERA5 input runoff through 6M reaches in 20s on a single GPU chip. The output matches the original simulation with NSE of .9996.



Use-case B: AD allows for efficient automated calibration by gradient descent. We demonstrate efficient calibration over the Amazon basin.

