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GROMACS: Open-source,
high-performance
molecular dynamics engine

e Motto: Fast, Flexible, Free

e Domains: Biophysics, biochemistry, materials science

e User base: 10k’s, academic and industry

e Performance: Hand-tuned SIMD & SIMT kernels

e Design: Heterogeneous-first (CPU + GPU)

e Technologies: C++, OpenMP, MPI, CUDA, OpenCL,
SYCL, HIP

e Precision: Mixed-precision optimized for high
throughput; only FP32 on GPUs

Molecular Dynamics

e MD Loop: Calculate forces (expensive) = Update
positions & velocities = Repeat

e Workload: Arithmetically intensive and typically
compute-bound.

e Timescales: femtosecond steps — millisecond events

e Scale: 108 - 10? steps per simulation

e Problem size: 10#-10° particles, need strong scaling

e Goal: Sub-millisecond wall-time per step

GPU-initiated halo exchange [1]

Domain decomposition: Simulation box split
into spatial domains per GPU.

Read the
PAW-ATM

workshop

Halo exchange: Atoms near boundaries need E 14
neighbor coordinates to compute forces.

Staged forwarding: "Neutral territory"
method moves data sequentially (Z—=Y—X)
to minimize connections.

Bottleneck: Sequential pulses and CPU synchronization
expose latency on the critical path.

GPU-aware MPI is still CPU-initiated, requiring host-
device synchronizations and multiple pack/unpack kernel
launches on the critical path.
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GPU-initiated communications using NVSHMEM avoid
CPU overheads to maximize compute-communication
overlap. Fused pack/unpack kernels minimize GPU API
overheads.
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Results above obtained on NVIDIA Eos: 2% Intel Xeon
8480C and 4x H100 per node, NVLink 4.0 + NDR 400G
InfiniBand
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Manual instrumentation for GPU tracing

NVIDIA Nsight Systems (nsys) captures kernel concurrency
but lacks visibility into resource division. The timeline of a
single MD step below shows kernels overlapping, but
cannot quantify how many Streaming Multiprocessors
(SMs) each kernel actually holds or how they fight for
space:
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i

By reading %globaltimer (timestamps) and %smid (SM
index) per thread block, we can reconstruct exact SM
occupancy over time. The plot below, showing the fraction
of total device SMs that each kernel is executed on,
reveals dynamic resource contention: notice how the high-
priority NBNXM_NONLOCAL (light blue) gradually
preempts the running NBNXM _LOCAL (dark blue), visibly
taking time to "push out" the lower-priority work from the
GPU:
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The default timer updated frequency of 1 us is sufficient
for this work. The update frequency can be increased to
32 ns using an undocumented mechanism invoked by
NVIDIA profiling tools, e.g., by initializing CUPTI at the
start of the application with cuptiSubscribe +
cuptiEnableDomain.

Alternatives: Similar fine-grained timings can be obtained
using automated and semi-automated approaches, such as
CUPTI or Neutrino. Here, manual instrumentation was
used since the end goal is to use it not only for
development but also in production for dynamic load
balancing.

Used hardware & software

Tracing restricted to single-node execution to isolate
ensure reproducible communication patterns by only using
NVLink interconnect.

Dardel-GH (HPE Cray EX254n)

4x 72-core Grace CPU (Neoverse V2)
4x Hopper GH200 GPU
Fully-connected NVLink 4.0, 6 lanes/link

CUDA 12.6, NVSHMEM 3.3.9, GCC 12.3

GROMACS 2026.rc, with device-side timing and
asynchronous pruning patches.

MPI vs. NVSHMEM: Trace analysis

The plots below each show a 1 ms snapshot of a 360k
atoms (920k atoms/GPU) simulation. Dashed vertical lines
mark MD step boundaries.

With a 2D decomposition, the necessary two pulses
(Y—=X) must be serialized. With MPI, this requires two
pairs of PACK/UNPACK kernels and associates host-
device synchronizations and MPI calls each step, leading
to low GPU utilization:
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With NVSHMEM, we fuse computation, communication,
and signalling for all pulses into single PACK and UNPACK
kernels. This increases the iteration rate and improves
GPU utilization:
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Synchronization paradox

GROMACS periodically prunes the lists of nearby atoms
to keep force calculations efficient. To prevent this
operation from affecting the critical path, the
“asynchronous pruning” optimization used in [1] moves
pruning to a low-priority stream, intending it to run in
gaps between other kernels. These pruning kernels can
drift freely, synchronizing with the main compute loop
only once every 8 steps.

In [1], we observed that adding an explicit device-host
synchronization after the fused UNPACK kernel
paradoxically improves NVSHMEM performance,
surpassing the asynchronous pruning baseline. For
example, in the 90k atoms/GPU case, it speeds up Non-
local work (from the beginning of PACK to the end of
UNPACK) by up to 5%:
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On the tested GH200 GPUs, the GPU scheduler
aggressively defers these low-priority PRUNE_LOCAL and
PRUNE_NONLOCAL kernels. Instead of running
incrementally in the background, they accumulate until
the mandatory synchronization point (every 8th step),
where they launch in a concentrated burst. This burst
competes for resources with other kernels, potentially
slowing down the critical path. Additionally, delayed
pruning can increase the amount of work for the most
expensive compute kernels: NBNXM_LOCAL and
NBNXM_NONLOCAL.
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Explicitly synchronizing a different (*halo”) stream prompts
the scheduler to launch the pending low-priority kernels in
the “prune” stream incrementally. This side effect smooths
out resource usage, preventing the contention and slightly
im:
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Conclusions

Here, we analyse in depth some of the performance
observations of fused GPU-initiated halo exchange in

GROMACS, originally made in [1], and show the
limitations of priority-based scheduling.

The in-kernel timing approach has low overheds and
provides better insights into complex GPU schedules than
standard profiling tools.

GPU-initiated halo exchange using NVSHMEM is available
as an experimental feature in GROMACS 2026.

Future work

e Precise dynamic load balancing (DLB): CUDA events are
unreliable for timing heavily overlapped schedules. We
aim to drive DLB using in-kernel global timers (as used in
our tracing) to accurately measure local work. This
approach is portable to AMD GPUs (used via SYCL and
HIP backends) but remains challenging on Intel GPUs due
to lack of a global steady timer.

e Better resource partitioning: CUDA Green Contexts and
Cluster Launch Control mechanisms allow limiting the
resource use of a kernel and offer a more controllable
mechanism to isolate the critical path from the
interference from low-priority tasks.
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