
A Fine-Grained Trace Analysis of GPU-ini�ated Halo Exchange in GROMACS

Acknowledgments
Kernel �ming discussion: Timothée David–Cléris
This work was funded by the European Union under the GANANA
project (Grant Agreement No. Grant #101196247) and supported by
the Swedish e-Science Research Center.

References
[1] Doijade et al. Supercompu�ng, PAW-ATM (2025), doi:10.1145/3731599.3767508
[2] Páll et. al. J. Chem. Phys. 153 (2020), doi:10.1063/5.0018516

GROMACS: Open-source,
high-performance
molecular dynamics engine
• Mo�o: Fast, Flexible, Free
• Domains: Biophysics, biochemistry, materials science
• User base: 10k’s, academic and industry
• Performance: Hand-tuned SIMD & SIMT kernels
• Design: Heterogeneous-first (CPU + GPU)
• Technologies: C++, OpenMP, MPI, CUDA, OpenCL,

SYCL, HIP
• Precision: Mixed-precision op�mized for high

throughput; only FP32 on GPUs

Molecular Dynamics
• MD Loop: Calculate forces (expensive) → Update

posi�ons & veloci�es → Repeat
• Workload: Arithme�cally intensive and typically

compute-bound.
• Timescales: femtosecond steps → millisecond events
• Scale: 108 – 1015 steps per simula�on
• Problem size: 104–108 par�cles, need strong scaling
• Goal: Sub-millisecond wall-�me per step

Presenter: Andrey Alekseenko (KCSC, KTH Royal Ins�tute of Technology; andreyal@kth.se)
Original Paper Co-authors: Mahesh Doijade, Ania Brown, Alan Gray, Szilárd Páll

Used hardware & so�ware
Tracing restricted to single-node execu�on to isolate
ensure reproducible communica�on pa�erns by only using
NVLink interconnect.
Dardel-GH (HPE Cray EX254n)

4× 72-core Grace CPU (Neoverse V2)
 4× Hopper GH200 GPU
 Fully-connected NVLink 4.0, 6 lanes/link

CUDA 12.6, NVSHMEM 3.3.9, GCC 12.3
GROMACS 2026.rc, with device-side �ming and
asynchronous pruning patches.

Download
this

poster

GPU-ini�ated halo exchange [1]
Domain decomposi�on: Simula�on box split
into spa�al domains per GPU.

Halo exchange: Atoms near boundaries need
neighbor coordinates to compute forces.

Staged forwarding: "Neutral territory"
method moves data sequen�ally (Z→Y→X)
to minimize connec�ons.

Bo�leneck: Sequen�al pulses and CPU synchroniza�on
expose latency on the cri�cal path.

GPU-aware MPI is s�ll CPU-ini�ated, requiring host-
device synchroniza�ons and mul�ple pack/unpack kernel
launches on the cri�cal path.

GPU-ini�ated communica�ons using NVSHMEM avoid
CPU overheads to maximize compute-communica�on
overlap. Fused pack/unpack kernels minimize GPU API
overheads.

Mul�-node performance improvements

Results above obtained on NVIDIA Eos: 2× Intel Xeon
8480C and 4× H100 per node, NVLink 4.0 + NDR 400G
InfiniBand

Local non-bonded F

MD time-step

CPU

GPU

Reduce
F

Fused
Pack

CommX

Fused
Comm

UnpackF

Clear
buffers

Integration
Constraints

Reduce
F

Rolling
prune

remote
PEs

remote
PEs

Comm x Comm F

Non-local
non-bonded F

Bon-
ded F

Local stream
(middle priority)

Non-local stream
(high priority)

Update stream
(high priority)

Prune stream
(low priority)

Read the
PAW-ATM
workshop

paper

Manual instrumenta�on for GPU tracing
NVIDIA Nsight Systems (nsys) captures kernel concurrency
but lacks visibility into resource division. The �meline of a
single MD step below shows kernels overlapping, but
cannot quan�fy how many Streaming Mul�processors
(SMs) each kernel actually holds or how they fight for
space:

By reading %global�mer (�mestamps) and %smid (SM
index) per thread block, we can reconstruct exact SM
occupancy over �me. The plot below, showing the frac�on
of total device SMs that each kernel is executed on,
reveals dynamic resource conten�on: no�ce how the high-
priority NBNXM_NONLOCAL (light blue) gradually
preempts the running NBNXM_LOCAL (dark blue), visibly
taking �me to "push out" the lower-priority work from the
GPU:

The default �mer updated frequency of 1 µs is sufficient
for this work. The update frequency can be increased to
32 ns using an undocumented mechanism invoked by
NVIDIA profiling tools, e.g., by ini�alizing CUPTI at the
start of the applica�on with cup�Subscribe +
cup�EnableDomain.

Alterna�ves: Similar fine-grained �mings can be obtained
using automated and semi-automated approaches, such as
CUPTI or Neutrino. Here, manual instrumenta�on was
used since the end goal is to use it not only for
development but also in produc�on for dynamic load
balancing.

MPI vs. NVSHMEM: Trace analysis
The plots below each show a 1 ms snapshot of a 360k
atoms (90k atoms/GPU) simula�on. Dashed ver�cal lines
mark MD step boundaries.

With a 2D decomposi�on, the necessary two pulses
(Y→X) must be serialized. With MPI, this requires two
pairs of PACK/UNPACK kernels and associates host-
device synchroniza�ons and MPI calls each step, leading
to low GPU u�liza�on:

With NVSHMEM, we fuse computa�on, communica�on,
and signalling for all pulses into single PACK and UNPACK
kernels. This increases the itera�on rate and improves
GPU u�liza�on:

Conclusions
Here, we analyse in depth some of the performance
observa�ons of fused GPU-ini�ated halo exchange in
GROMACS, originally made in [1], and show the
limita�ons of priority-based scheduling.

The in-kernel �ming approach has low overheds and
provides be�er insights into complex GPU schedules than
standard profiling tools.

GPU-ini�ated halo exchange using NVSHMEM is available
as an experimental feature in GROMACS 2026.

Future work
• Precise dynamic load balancing (DLB): CUDA events are

unreliable for �ming heavily overlapped schedules. We
aim to drive DLB using in-kernel global �mers (as used in
our tracing) to accurately measure local work. This
approach is portable to AMD GPUs (used via SYCL and
HIP backends) but remains challenging on Intel GPUs due
to lack of a global steady �mer.

• Be�er resource par��oning: CUDA Green Contexts and
Cluster Launch Control mechanisms allow limi�ng the
resource use of a kernel and offer a more controllable
mechanism to isolate the cri�cal path from the
interference from low-priority tasks.

Synchroniza�on paradox
GROMACS periodically prunes the lists of nearby atoms
to keep force calcula�ons efficient. To prevent this
opera�on from affec�ng the cri�cal path, the
“asynchronous pruning” op�miza�on used in [1] moves
pruning to a low-priority stream, intending it to run in
gaps between other kernels. These pruning kernels can
dri� freely, synchronizing with the main compute loop
only once every 8 steps.

In [1], we observed that adding an explicit device-host
synchroniza�on a�er the fused UNPACK kernel
paradoxically improves NVSHMEM performance,
surpassing the asynchronous pruning baseline. For
example, in the 90k atoms/GPU case, it speeds up Non-
local work (from the beginning of PACK to the end of
UNPACK) by up to 5%:

On the tested GH200 GPUs, the GPU scheduler
aggressively defers these low-priority PRUNE_LOCAL and
PRUNE_NONLOCAL kernels. Instead of running
incrementally in the background, they accumulate un�l
the mandatory synchroniza�on point (every 8th step),
where they launch in a concentrated burst. This burst
competes for resources with other kernels, poten�ally
slowing down the cri�cal path. Addi�onally, delayed
pruning can increase the amount of work for the most
expensive compute kernels: NBNXM_LOCAL and
NBNXM_NONLOCAL.

Explicitly synchronizing a different (“halo”) stream prompts
the scheduler to launch the pending low-priority kernels in
the “prune” stream incrementally. This side effect smooths
out resource usage, preven�ng the conten�on and slightly
im:

Local non-bonded F

Non-local
non-bonded F

MD time-step

CPU

GPU

Reduce
F

remote
MPI ranks

remote
MPI ranks

Wait Wait

Pack
X

Pack
X

Un-
pack

F

Un-
pack

F

Clear
buffers

Integration
Constraints

Reduce
F

Wait WaitWait Wait WaitWait

Rolling
prune

Comm x Comm F

Bon-
ded F

Local stream
(middle priority)

Non-local stream
(high priority)

Update stream
(high priority)

Prune stream
(low priority)

