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GROMACS: Open-source,
high-performance
molecular dynamics engine
•  Mo�o: Fast, Flexible, Free
•  Domains: Biophysics, biochemistry, materials science
•  User base: 10k’s, academic and industry
•  Performance: Hand-tuned SIMD & SIMT kernels
•  Design: Heterogeneous-first (CPU + GPU)
•  Technologies: C++, OpenMP, MPI, CUDA, OpenCL, 

SYCL, HIP
•  Precision: Mixed-precision op�mized for high 

throughput; only FP32 on GPUs

Molecular Dynamics
•  MD Loop: Calculate forces (expensive) → Update 

posi�ons & veloci�es → Repeat
• Workload: Arithme�cally intensive and typically 

compute-bound. 
•  Timescales: femtosecond steps → millisecond events
•  Scale: 108 – 1015 steps per simula�on
•  Problem size: 104–108  par�cles, need strong scaling
•  Goal: Sub-millisecond wall-�me per step
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Used hardware & so�ware
Tracing restricted to single-node execu�on to isolate 
ensure reproducible communica�on pa�erns by only using 
NVLink interconnect.
Dardel-GH (HPE Cray EX254n)

4× 72-core Grace CPU (Neoverse V2)
 4× Hopper GH200 GPU
 Fully-connected NVLink 4.0, 6 lanes/link

CUDA 12.6, NVSHMEM 3.3.9, GCC 12.3
GROMACS 2026.rc, with device-side �ming and 
asynchronous pruning patches.

Download 
this
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GPU-ini�ated halo exchange [1]
Domain decomposi�on: Simula�on box split
into spa�al domains per GPU.

Halo exchange: Atoms near boundaries need
neighbor coordinates to compute forces.

Staged forwarding: "Neutral territory"
method moves data sequen�ally (Z→Y→X)
to minimize connec�ons.

Bo�leneck: Sequen�al pulses and CPU synchroniza�on 
expose latency on the cri�cal path.

GPU-aware MPI is s�ll CPU-ini�ated, requiring host-
device synchroniza�ons and mul�ple pack/unpack kernel 
launches on the cri�cal path.

GPU-ini�ated communica�ons using NVSHMEM avoid 
CPU overheads to maximize compute-communica�on 
overlap. Fused pack/unpack kernels minimize GPU API 
overheads.

Mul�-node performance improvements

Results above obtained on NVIDIA Eos: 2× Intel Xeon 
8480C and 4× H100 per node, NVLink 4.0 + NDR 400G 
InfiniBand
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Manual instrumenta�on for GPU tracing
NVIDIA Nsight Systems (nsys) captures kernel concurrency 
but lacks visibility into resource division. The �meline of a 
single MD step below shows kernels overlapping, but 
cannot quan�fy how many Streaming Mul�processors 
(SMs) each kernel actually holds or how they fight for 
space:

By reading %global�mer (�mestamps) and %smid (SM 
index) per thread block, we can reconstruct exact SM 
occupancy over �me. The plot below, showing the frac�on 
of total device SMs that each kernel is executed on, 
reveals dynamic resource conten�on: no�ce how the high-
priority NBNXM_NONLOCAL (light blue) gradually 
preempts the running NBNXM_LOCAL (dark blue), visibly 
taking �me to "push out" the lower-priority work from the 
GPU:

The default �mer updated frequency of 1 µs is sufficient 
for this work. The update frequency can be increased to 
32 ns using an undocumented mechanism invoked by 
NVIDIA profiling tools, e.g., by ini�alizing CUPTI at the 
start of the applica�on with cup�Subscribe + 
cup�EnableDomain.

Alterna�ves: Similar fine-grained �mings can be obtained 
using automated and semi-automated approaches, such as 
CUPTI or Neutrino. Here, manual instrumenta�on was 
used since the end goal is to use it not only for 
development but also in produc�on for dynamic load 
balancing.

MPI vs. NVSHMEM: Trace analysis
The plots below each show a 1 ms snapshot of a 360k 
atoms (90k atoms/GPU) simula�on. Dashed ver�cal lines 
mark MD step boundaries.

With a 2D decomposi�on, the necessary two pulses 
(Y→X) must be serialized. With MPI, this requires two 
pairs of PACK/UNPACK kernels and associates host-
device synchroniza�ons and MPI calls each step, leading 
to low GPU u�liza�on:

With NVSHMEM, we fuse computa�on, communica�on, 
and signalling for all pulses into single PACK and UNPACK 
kernels. This increases the itera�on rate and improves 
GPU u�liza�on:

Conclusions
Here, we analyse in depth some of the performance 
observa�ons of fused GPU-ini�ated halo exchange in 
GROMACS, originally made in [1], and show the 
limita�ons of priority-based scheduling.

The in-kernel �ming approach has low overheds and 
provides be�er insights into complex GPU schedules than 
standard profiling tools.

GPU-ini�ated halo exchange using NVSHMEM is available 
as an experimental feature in GROMACS 2026.

Future work
•  Precise dynamic load balancing (DLB): CUDA events are 

unreliable for �ming heavily overlapped schedules. We 
aim to drive DLB using in-kernel global �mers (as used in 
our tracing) to accurately measure local work. This 
approach is portable to AMD GPUs (used via SYCL and 
HIP backends) but remains challenging on Intel GPUs due 
to lack of a global steady �mer.

•  Be�er resource par��oning: CUDA Green Contexts and  
Cluster Launch Control mechanisms allow limi�ng the 
resource use of a kernel and offer  a more controllable 
mechanism to isolate the cri�cal path from the 
interference from low-priority tasks.

Synchroniza�on paradox
GROMACS periodically prunes the lists of nearby atoms 
to keep force calcula�ons efficient. To prevent this 
opera�on from affec�ng the cri�cal path, the 
“asynchronous pruning” op�miza�on used in [1] moves 
pruning to a low-priority stream, intending it to run in 
gaps between other kernels. These pruning kernels can 
dri� freely, synchronizing with the main compute loop 
only once every 8 steps.

In [1], we observed that adding an explicit device-host 
synchroniza�on a�er the fused UNPACK kernel 
paradoxically improves NVSHMEM performance, 
surpassing the asynchronous pruning baseline. For 
example, in the 90k atoms/GPU case, it speeds up Non-
local work (from the beginning of PACK to the end of 
UNPACK) by up to 5%:

On the tested GH200 GPUs, the GPU scheduler 
aggressively defers these low-priority PRUNE_LOCAL and 
PRUNE_NONLOCAL kernels. Instead of running 
incrementally in the background, they accumulate un�l 
the mandatory synchroniza�on point (every 8th step), 
where they launch in a concentrated burst. This burst 
competes for resources with other kernels, poten�ally 
slowing down the cri�cal path. Addi�onally, delayed 
pruning can increase the amount of work for the most 
expensive compute kernels: NBNXM_LOCAL and 
NBNXM_NONLOCAL.

Explicitly synchronizing a different (“halo”) stream prompts 
the scheduler to launch the pending low-priority kernels in 
the “prune” stream incrementally. This side effect smooths 
out resource usage, preven�ng the conten�on and slightly 
im:
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