
Multi Agent System for Local LLM-Based HPC Code Generation
Ryo Mikasa1, Daichi Mukunoki2, Koki Morita3, Shun-Ichirou Hayashi3,

Tetsuya Hoshino2, Takahiro Katagiri2

1 School of Informatics, Nagoya University, 2 Information Technology Center, Nagoya University

3 Graduate School of Informatics, Nagoya University

◆Background
✓Large Language Models (LLMs) have been increasingly used for code

generation, including High-Performance Computing (HPC) applications
✓LLM-based agents can automate code generation and code testing and

validation

◆Problem
✓Most existing agent frameworks rely on closed-source LLM APIs

• This raises security and privacy concerns when handling confidential
code or proprietary software

✓Using locally deployed LLMs is a potential solution However, when directly
integrated into existing frameworks[1], their performance is often suboptimal

◆Proposed Approach
✓ Supports parallel inference across multiple LLM servers

• Enables efficient utilization of computational resources
• Reduces latency compared to conventional sequential agent systems

✓ Achieves faster and more efficient code generation for HPC applications

◆Key Features and Benefits
✓ We propose a prototype agent system specifically designed to

• operate reliably with local LLMs
• improve performance in HPC code generation tasks

✓ The system investigates
• architectural designs that enhance the effectiveness of local LLM-

based agents

1 Introduction

3 Evaluation

◆Experimental Conditions
✓ Hardware: Intel Xeon Gold 6230 × 2 (40 cores total),

2688 TFlops FP64, 2815 GB/s memory bandwidth
✓ Compiler: GCC 1130 with -O3 -march=native –fopenmp
✓ LLM: gpt-oss-120b[2]

✓ Measurement: Best of 5 executions per kernel
✓ Reference: Intel MKL 202320 for correctness validation

and baseline
✓ Comparison target: performance differences at 1-, 2-, 4-,

and 8-way parallelism of PGs

◆Result
✓ Ability of LLM :

• gpt-oss-120b has fundamental knowledge of optimization
techniques in the HPC code domain, including correct usage of
OpenMP directives and SIMD intrinsic instructions

• It also understands performance optimization methods such as
blocking, memory prefetching, and data alignment

• By effectively eliciting this knowledge, it can be applied directly
to practical code implementation and performance tuning

✓ Effects of Parallelization
• Increasing the number of PGs results in higher peak

performance Notably, when comparing parallelism levels 1 to
8, we observe a 71% performance improvement

• By running more PGs in parallel, the total number of code
generation attempts across the system increases, improving
the chances of discovering better-performing code

4 Conclusion

◆In this work, we developed a framework for an iterative HPC code optimization system using
local large language models
◆In this study, we observed that increasing the level of parallel code generation tends to

improve the quality of the generated code In particular, when using local LLMs in a personal
computing environment, parallel inference can be an effective approach for better utilizing
available machine resources
◆Although the results are promising, the framework is still under development and requires

further refinement and evaluation

Acknowledgements
This work was supported by the Joint Usage/Research Center for Interdisciplinary Large-
scale Information Infrastructures (JHPCN) and the High Performance Computing
Infrastructure (HPCI) under Project ID: jh250015, and by JSPS KAKENHI Grants JP23K11126
and JP24K02945

References
[1] Dong Huang, Qingwen BU, Jie M Zhang, Michael Luck, Yuhao Qing, andHeming Cui
2024 AgentCoder: Multi-Agent Code Generation with EffectiveTesting and Self-
optimisation arXiv preprint arXiv:231213010v3 (may 2024)arXiv:231213010v3 [csCL]
Version v3 (24 May 2024)
[2] OpenAI 2025 gpt-oss-120b & gpt-oss-20b Model Card arXiv:250810925
[csCL]https://arxivorg/abs/250810925

◆ Role of LLM agents
✓ PM (Project Manager)

• Input: The currently best-performing kernel
• Output: Plans optimization strategies for each PG

✓ PGs (Programmers)
• Input: PM-planned strategy (orange line) or Previously created

code and the resulting error (red line)
• Output: Optimized kernel

◆ Iterative Process
1 PM assigns different strategies to each PG
2 PGs implement optimized kernels in parallel
3 Execute and validate each kernel
4 If an error occurs, the programmer rewrites the code based on the

error details
5 Select fastest valid kernel → Next iteration

2 System Design

Original kernel (094 GFLOPS) Best kernel in this experiment (Number of PGs is 8, 35491 GFLOPS)

◆ Constraint
• The agent edits only a single source file; compiler flags and build

scripts are fixed (cannot be modified)

	スライド 1

