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◆Background
✓Large Language Models (LLMs) have been increasingly used for code 

generation, including High-Performance Computing (HPC) applications
✓LLM-based agents can automate code generation and code testing and 

validation

◆Problem
✓Most existing agent frameworks rely on closed-source LLM APIs

• This raises security and privacy concerns when handling confidential 
code or proprietary software

✓Using locally deployed LLMs is a potential solution However, when directly 
integrated into existing frameworks[1], their performance is often suboptimal

◆Proposed Approach
✓ Supports parallel inference across multiple LLM servers

• Enables efficient utilization of computational resources
• Reduces latency compared to conventional sequential agent systems

✓ Achieves faster and more efficient code generation for HPC applications

◆Key Features and Benefits
✓ We propose a prototype agent system specifically designed to 

• operate reliably with local LLMs 
• improve performance in HPC code generation tasks

✓ The system investigates 
• architectural designs that enhance the effectiveness of local LLM-

based agents

1 Introduction

3 Evaluation

◆Experimental Conditions
✓ Hardware: Intel Xeon Gold 6230 × 2 (40 cores total), 

2688 TFlops FP64, 2815 GB/s memory bandwidth
✓ Compiler: GCC 1130 with -O3 -march=native –fopenmp
✓ LLM: gpt-oss-120b[2] 

✓ Measurement: Best of 5 executions per kernel
✓ Reference: Intel MKL 202320 for correctness validation 

and baseline
✓ Comparison target: performance differences at 1-, 2-, 4-, 

and 8-way parallelism of PGs

◆Result
✓ Ability of LLM :

• gpt-oss-120b has fundamental knowledge of optimization 
techniques in the HPC code domain, including correct usage of 
OpenMP directives and SIMD intrinsic instructions

• It also understands performance optimization methods such as 
blocking, memory prefetching, and data alignment

• By effectively eliciting this knowledge, it can be applied directly 
to practical code implementation and performance tuning

✓ Effects of Parallelization
• Increasing the number of PGs results in higher peak 

performance Notably, when comparing parallelism levels 1 to 
8, we observe a 71% performance improvement 

• By running more PGs in parallel, the total number of code 
generation attempts across the system increases, improving 
the chances of discovering better-performing code

4 Conclusion

◆In this work, we developed a framework for an iterative HPC code optimization system using 
local large language models
◆In this study, we observed that increasing the level of parallel code generation tends to 

improve the quality of the generated code In particular, when using local LLMs in a personal 
computing environment, parallel inference can be an effective approach for better utilizing 
available machine resources
◆Although the results are promising, the framework is still under development and requires 

further refinement and evaluation
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◆ Role of LLM agents
✓ PM (Project Manager)

• Input: The currently best-performing kernel
• Output: Plans optimization strategies for each PG

✓ PGs (Programmers)
• Input: PM-planned strategy (orange line) or Previously created 

code and the resulting error (red line) 
• Output: Optimized kernel

◆ Iterative Process
1 PM assigns different strategies to each PG
2 PGs implement optimized kernels in parallel
3 Execute and validate each kernel
4 If an error occurs, the programmer rewrites the code based on the   

error details
5 Select fastest valid kernel → Next iteration

2 System Design

Original kernel (094 GFLOPS) Best kernel in this experiment (Number of PGs is 8, 35491 GFLOPS)

◆ Constraint
• The agent edits only a single source file; compiler flags and build 

scripts are fixed (cannot be modified)
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