Multi Agent System for Local LLM-Based HPC Code Generation

Ryo Mikasa?, Daichi Mukunoki?, Koki Morita3, Shun-Ichirou Hayashi?,

Tetsuya Hoshino?, Takahiro Katagiri?

1 School of Informatics, Nagoya University, 2 Information Technology Center, Nagoya University
3 Graduate School of Informatics, Nagoya University

1 Introduction

& Proposed Approach
€ Background v’ Supports parallel inference across multiple LLM servers
v'Large Language Models (LLMs) have been increasingly used for code * Enables efficient utilization of computational resources

 Reduces latency compared to conventional sequential agent systems
v Achieves faster and more efficient code generation for HPC applications

& Key Features and Benefits
v' We propose a prototype agent system specifically designed to

e operate reliably with local LLMs
* improve performance in HPC code generation tasks

generation, including High-Performance Computing (HPC) applications
v LLM-based agents can automate code generation and code testing and
validation

¥ Problem

v'Most existing agent frameworks rely on closed-source LLM APIs
* This raises security and privacy concerns when handling confidential

code or proprietary software v’ The system investigates
v'Using locally deployed LLMs is a potential solution However, when directly * architectural designs that enhance the effectiveness of local LLM-
integrated into existing frameworks!!], their performance is often suboptimal based agents
2 System Design ¢ Role of LLM agents

v' PM (Project Manager)
* Input: The currently best-performing kernel

PGs C :
s I Qutput: Plans optimization strategies for each PG
(write optimized kernel) = . error
s v PGs (Programmers)
_ PG1l . e ™ . .
Original Kernel P e Ko oo * Input: PM-planned strategy (orange line) or Previously created
(make each plan) -'- // block size=8 i Exec d d th |t d I
| | code and the resulting error (red line
void kernel orig() { _ S N
P61: block size=s 1 Qutput: Optimized kernel
// original PG2 T .
PG2: block size=16 C
) iotenentation e ot ket ontl) e Select € Iterative Process
| - "’\" /1 block_size=lo KZ‘:ﬁ';I 1 PM assigns different strategies to each PG
o), AT T
PGN: block size=s4 | \ - 2 PGs implement optimized kernels in parallel
} \ PGN X 3 Execute and validate each kernel
void kernel opt() { :__) .
| /7 block size=a | Sxee 4 If an error occurs, the programmer rewrites the code based on the
: I

\ L error details
5 Select fastest valid kernel > Next iteration

¢ Constraint
 The agent edits only a single source file; compiler flags and build
scripts are fixed (cannot be modified)

Next Iteration

3 Evaluation

Original kernel (094 GFLOPS) Best kernel in this experiment (Number of PGs is 8, 35491 GFLOPS)
‘Experimental Conditions volid matmul original{int N, double *A, double *E, double *C) { void matmul optimized({int N, double *A, double *B, double *C) {
for (int i = 8; 1 < N; i++) { const int BM = 64;
v' Hardware: Intel Xeon Gold 6230 X 2 (40 cores total), For (int 5 = @; § < N; j4+) { const int BN = 64;
. _ , const int BK = 64;
2688 TFIOpS FP64, 2815 GB/S memOry bandW|dth double sum = ©.6; #pragma omp parallel for collapse(2) schedule(static)

. . . for (int k = @; k < N; k++) {
v' Compiler: GCC 1130 with -O3 -march=native —fopenmp sum += A[1 * N + k] * B[k * N + J];

for (int i8 = @; i8 < N; 18 += BM)
for (int j@ = @; jé < N; j© += BN) {

v . _Acc. [2] ¥ For (int k& = @: k8 < N; k@ += BK) |
LLM: gpt-0ss 120b C[1 * N+ J] = sum; int imax = (i@ + BM > N) 2 N - i@ : BM;
v' Measurement: Best of 5 executions per kernel } int jmax = (j@ + BN > N) 2 N - j@ : BN;
. . } int kmax = (ké + BK » N) 2 N - ké : BK;
v" Reference: Intel MKL 202320 for correctness validation) double *packa;

double *packB;
posix memalign((void **)&packa, 64, BM * BK * sizeof(double));
posix memalign((void **)&packB, 64, BK * BN * sizeof(double));
for (int ii = 6; ii < imax; ++1ii) {
for (int kk = 6; kk < kmax; ++kk) |
packA[1l * BK + kk] = A[(i& + 1i1) * N + (k& + kk)];

and baseline
v' Comparison target: performance differences at 1-, 2-, 4-,
and 8-way parallelism of PGs

@ Result -
v ili . for (int kk = 8; kk < kmax; ++kk)
Ablllty of LLM : Average of the Best Performance over 5 Runs . 1};: (int jjJ= Ea-{jjmjxgm;- ;+§j} (
* gpt-0ss-120b has fundamental knowledge of optimization hackBLKK * BN & 19] - BL(KS + k&) * N + (18 + 1)1;

-———- ¥
}
for (int ii = @; ii < imax; ++ii)
tfor (int jj = @; jj < jmax; jj += &)
_ m512d cvec = mm512 loadu pd(&C[{i8& + ii) * N + (j8 + 3j)1);
for (int kk = @; kk < kmax; ++kk) |
_ m512d avec = mm512 setl pd(packaA[ii * BK + kk]);
__m512d bvec = mm512 loadu pd(&packB[kk * BN + Jj]);
cvec = mm512 fmadd pd(avec, bvec, cvec);

techniques in the HPC code domain, including correct usage of
OpenMP directives and SIMD intrinsic instructions

e |talso understands performance optimization methods such as
blocking, memory prefetching, and data alignment

e By effectively eliciting this knowledge, it can be applied directly
to practical code implementation and performance tuning

v’ Effects of Parallelization
* Increasing the number of PGs results in higher peak
performance Notably, when comparing parallelism levels 1 to
8, we observe a 71% performance improvement
* By running more PGs in parallel, the total number of code
generation attempts across the system increases, improving

175 A

150 A
+71%

=
NI
L

100 _mm512 storeu pd(&C[(i8 + ii) * N + (j@ + jj)], cvec);
¥

L

free(packAi);

free(packB);

Average Performance (GFLOPS)
&

un
o
1

the chances of discovering better-performing code 25 1

4 8
Number of PGs

4 Conclusion

Acknowledgements

This work was supported by the Joint Usage/Research Center for Interdisciplinary Large-
scale Information Infrastructures (JHPCN) and the High Performance Computing

i Infrastructure (HPCI) under Project ID: jh250015, and by JSPS KAKENHI Grants JP23K11126
and JP24K02945

@ In this work, we developed a framework for an iterative HPC code optimization system using
local large language models

€ In this study, we observed that increasing the level of parallel code generation tends to
improve the quality of the generated code In particular, when using local LLMs in a personal
computing environment, parallel inference can be an effective approach for better utilizing
available machine resources

& Although the results are promising, the framework is still under development and requires
further refinement and evaluation

References

[1] Dong Huang, Qingwen BU, Jie M Zhang, Michael Luck, Yuhao Qing, andHeming Cui
2024 AgentCoder: Multi-Agent Code Generation with EffectiveTesting and Self-
optimisation arXiv preprint arXiv:231213010v3 (may 2024)arXiv:231213010v3 [csCL]
Version v3 (24 May 2024)

[2] OpenAl 2025 gpt-0ss-120b & gpt-o0ss-20b Model Card arXiv:250810925
[csCL]https://arxivorg/abs/250810925

	スライド 1

