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For scientific image compression, improving reconstruction
accuracy is important not only for visual quality, but also for
reducing residual entropy.

Large-scale scientific facilities such as SPring-8[1] generate
massive volumes of X-ray Computed Tomography (XCT) data.
Efficient storage and transmission of these high-resolution,
high-bit-depth images is a critical challenge.

Recent AI-based compression methods, such as TEZip[2], show
strong performance but are:

• Limited to non-time-evolutionary data

•Trained on non-scientific image datasets

As a result, reconstruction errors remain structured, leading to
high residual entropy and limiting the compression ratio.

Key Idea
We propose an AI-based scientific image compression 
framework where:

 Fine-tuning a super-resolution model on scientific data 
improves reconstruction accuracy in a compression-aware 
manner, resulting in more compressible residuals.

Proposed Method
Pipeline Overview

1. Downsample the original high-resolution XCT image

2. Reconstruct the image using a super-resolution model

3. Compute the delta image (pixel-wise difference)

4. Losslessly compress both:

▪ Downsampled image

▪ Delta image (using FFV1 codec[3])

 Since delta image compressibility strongly depends on 
reconstruction accuracy, improving the reconstruction model is 
key.

Figure 1. The proposed AI-based compression pipeline  

Model Fine-Tuning

•AI model: SwinIR[4] (× 𝟒 Super-Resolution)

o Transformer-based image restoration model

o Uses shifted window self-attention to capture both local 
textures and long-range structures

•Dataset: XCT-2K (904 scientific XCT images, 16-bit
grayscale)

o 700 training pairs

o Remaining images for testing
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Result

Evaluation Metrics
To assess both reconstruction quality and compression 
performance, we evaluate:

•PSNR(Peak Signal-to-Noise Ratio)

•Shannon Entropy of Delta Image 

•Compression Ratio

▪ Delta image only (CR ∆)

▪ Overall compression (CR Overall)

Key Observations

• PSNR improved by ~1.8 dB, indicating better pixel-level 
reconstruction

• Delta image entropy consistently decreased (from 6.414 to 6.146), 
improving lossless compressibility.

• The compression ratio increased by 0.058 (2.46%) for the delta 
image and by 0.052 (2.34%) for the overall pipeline.

Conclusions and Future Work
In this study, we proposed an AI-based scientific image compression 
approach and fine-tuned the pre-trained model on scientific XCT data, 
achieving improvements in reconstruction accuracy and compression 
ratio compared to the pre-trained model.

Future work will focus on a more efficient encoding method for the 
delta image to further enhance the compression.

Figure 2. Comparison between the pre-trained SwinIR model and fine-
tuned models trained for different numbers of fine-tuning 
epochs.

•Training:

o 50, 100, 150, 200, 250, 300 
epochs

o Batch size: 4

o Loss: Charbonnier loss

o Optimizer: Adam

o GPU: NVIDIA A100
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