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Enhancing Scientific Image
" Prediction and Compression

through AI Model Fine-Tuning

lll Background & Motivation

Large-scale scientific facilities such as SPring-8[1] generate
massive volumes of X-ray Computed Tomography (XCT) data.
Efficient storage and transmission of these high-resolution,
high-bit-depth images is a critical challenge.

Recent Al-based compression methods, such as TEZip[2], show
strong performance but are:

e Limited to non-time-evolutionary data
¢ Trained on non-scientific image datasets

As a result, reconstruction errors remain structured, leading to
high residual entropy and limiting the compression ratio.

| For scientific image compression, improving reconstruction
accuracy is important not only for visual quality, but also for
reducing residual entropy.

@ Key Idea

We propose an Al-based
framework where:

| Fine-tuning a super-resolution model on scientific data
iImproves reconstruction accuracy In a compression-aware
manner, resulting in more compressible residuals.

lll Proposed Method

Pipeline Overview
1. Downsample the original high-resolution XCT image
2. Reconstruct the image using a super-resolution model
3. Compute the delta image (pixel-wise difference)
4. Losslessly compress both:

= Downsampled image

= Delta image (using FFV1 codec[3])

scientific image compression

| Since delta image compressibility strongly depends on

reconstruction accuracy, improving the reconstruction model is
key.
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Figure 1. The proposed AI-based compression pipeline

Model Fine-Tuning

e AI model: SwinIR[4] (x 4 Super-Resolution)
o Transformer-based image restoration model

o Uses shifted window self-attention to capture both local
textures and long-range structures

e Dataset: XCT-2K (904 scientific XCT images,
grayscale)
o 700 training pairs
o Remaining images for testing

16-bit

e Training:
o 50, 100, 150, 200, 250, 300 o Loss: Charbonnier loss
epochs o Optimizer: Adam
o Batch size: 4 o GPU: NVIDIA A100
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<9 Evaluation Metrics

To assess both reconstruction quality and compression
performance, we evaluate:

e PSNR(Peak Signal-to-Noise Ratio)
e Shannon Entropy of Delta Image

e Compression Ratio
= Delta image only (CR A)

= QOverall compression (CR Overall)

Il Result

(a) PSNR

(b) Delta Image Entropy
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Figure 2. Comparison between the pre-trained SwinIR model and fine-
tuned models trained for different humbers of fine-tuning

epochs.
Key Observations
e PSNR improved by ~1.8 dB, indicating better pixel-level

reconstruction

e Delta image entropy consistently decreased (from 6.414 to 6.146),
Improving lossless compressibility.

e The compression ratio increased by 0.058 (2.46%) for the delta
Image and by 0.052 (2.34%) for the overall pipeline.

@Conclusions and Future Work

In this study, we proposed an Al-based scientific image compression
approach and fine-tuned the pre-trained model on scientific XCT data,
achieving improvements in reconstruction accuracy and compression
ratio compared to the pre-trained model.

Future work will focus on a more efficient encoding method for the
delta image to further enhance the compression.
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