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FINITE-ELEMENT DISCRETIZED MATRIX VECTOR MULTIPLICATION
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Figure 1. Sparse and Cell-Matrix Approach
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Figure 2. Multilevel Batched Layout

Avoid global assembly of matrices and evaluate matrix-vector products at FE cell level.

= Cell-Matrix Approach:

= Local dense matrix multiplications, High arithmetic intensity (straightforward strided batched
GEMM calls by vendor optimized libraries)

= Storage and access cost of cell-matrix (every cell) and cell-level vectors (u and v)

= Matrix-Free Approach:

= Reduced floating point ops and lesser memory footprint
= Efficient than cell-matrix approach for single vector

= Challenge for multivectors: Matrix-Free has low arithmetic intensity due to sequence of small
tensor contractions, hence non-trivial to extend to multivectors. (Current state-of-the-art deals
with single/small number of vectors only)

Goal: Propose and implement a computationally efficient and scalable matrix-free algorithm to
compute FE discretized matrix-multivector products arising in large scale eigenvalue problems
with application to quantum modeling of materials using Kohn-Sham Density Functional Theory
(DFT) on multi-node CPU architectures.

KOHN-SHAM DFT EIGENVALUE PROBLEM

Kohn-Sham DFT Equation (All-electron GGA)
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Introducing the finite-element (FE) discretization of the above PDE using w?(xq) = 3 N(x,)U ?j ,

we have

AU = (T+L+G)U=MUA
where the matrices T, L and M are the FE stiffness, weighted mass and mass matrices respectively.
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Kohn-Sham DFT Equation (Pseudopotential GGA)
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Finite-element discretized equations:
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COMPUTATIONAL METHODOLOGY FOR A°U“: REAL ARITHMETIC

= Cell-Matrix approach (A°U°): Evaluation of the element-]
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cell-level basis function values and the basis function gradients respectively at Gauss
quadrature points, with fs, s = 0, 1,2 representing the unit vector along the s'” axis, and
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the mapping to the reference domain (J,, is the jacobian matrix of the map from Q¢ to €2.).

= Matrix-free approach (A°U): The element level matrix multi-vector products are evaluated
on-the-fly by taking advantage of the tensor structured nature of the FE basis functions and the
quadrature rules instead of precomputing K*, V7, etc.
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The computational complexity of evaluating the products D, U¢ and N'”U¢ can be further
reduced by utilizing the symmetry relations of the Gauss Quadrature points and the

finite-element nodes, Dy, ; ; =

1D _ w\lD
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KOHN-SHAM DFT EIGENVALUE PROBLEM: COMPLEX ARITHMETIC

Kohn-Sham DFT Equation (Pseudopotential GGA for Periodic Systems)
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Finite-element discretized equations:
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Matrix-free approach (A°U°):
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HARDWARE-AWARE IMPLEMENTATION : TENSOR CONTRACTIONS

CPU implementation strategy
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Figure 3. Pictorial depiction of tensor contractions done on CPUs using the even-odd decomposition strategy. The extraction and first tensor
contraction steps of evaluation of A“U"") are depicted for the case of n, = 6 and n, = 8. Each block in U represents n; sized array of

AVX-512 doubles.

PERFORMANCE BENCHMARKS ON FRONTIER, PRAVEGA AND FUGAKU
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Figure 4. All-electron and KS-DFT GGA Pseudopotential (Real Arithmetic) (Top-Bottom, Left column) and All-electron
and KS-DFT GGA Pseudopotential (Complex Arithmetic) (Top-Bottom, Right column)
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Figure 5. Left: Al nanoparticle 561 atoms, Right: BCC molybdenum 1023 atoms with FEOrder = 8, FP32 precision on
Frontier (Left: N =4, Right: N = 12), Param Pravega (Left: N = 4, Right: N = 10) and Fugaku (Left: N = 70, Right: N = 200)
supercomputers.
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