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FINITE-ELEMENT DISCRETIZED MATRIX VECTOR MULTIPLICATION

Figure 1. Sparse and Cell-Matrix Approach
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Figure 2. Multilevel Batched Layout

Avoid global assembly of matrices and evaluate matrix-vector products at FE cell level.

Cell-Matrix Approach:

Local dense matrix multiplications, High arithmetic intensity (straightforward strided batched
GEMM calls by vendor optimized libraries)

Storage and access cost of cell-matrix (every cell) and cell-level vectors (u and v)

Matrix-Free Approach:

Reduced floating point ops and lesser memory footprint
Efficient than cell-matrix approach for single vector

Challenge for multivectors: Matrix-Free has low arithmetic intensity due to sequence of small
tensor contractions, hence non-trivial to extend to multivectors. (Current state-of-the-art deals
with single/small number of vectors only)

Goal: Propose and implement a computationally efficient and scalable matrix-free algorithm to
compute FE discretized matrix-multivector products arising in large scale eigenvalue problems
with application to quantum modeling of materials using Kohn-Sham Density Functional Theory
(DFT) on multi-node CPU architectures.

KOHN-SHAM DFT EIGENVALUE PROBLEM

Kohn-Sham DFT Equation (All-electron GGA)

Hψj(x) =
(

−1
2
∇2 + VL(ρ) + VG(ρ,∇ρ,R)

)
ψj(x) = λjψj(x), ρ(x) =

∑
j

|ψj(x)|2 ∀x ∈ Ω

Introducing the finite-element (FE) discretization of the above PDE using ψhj (xq) =
∑
I NI(xq)UhIj ,

we have

AU := (T + L + G)U = MUΛ
where the matrices T, L andM are the FE stiffness, weighted mass and mass matrices respectively.

T IJ =
∫

1
2
∇NI(x) · ∇NJ(x)dx LIJ =

∫
VL(ρ)NI(x)NJ(x)dx

GIJ =
∫

VG(ρ,∇ρ) · (∇NI(x)NJ(x) +NI(x)∇NJ(x))dx MIJ =
∫
NI(x)NJ(x)dx

Kohn-Sham DFT Equation (Pseudopotential GGA)

Hψj(x) =
(

−1
2
∇2 + VL(ρ) + VG(ρ,∇ρ,R)

)
ψj(x) +

∫
Vnl(x, y,R)ψj(y)dy = λjψj(x)

Finite-element discretized equations:

AU := (T + L + G + Vnl)U = MUΛ

V IJnl =
∑
a

∫
χa(x)NI(x)dx ∆a

∫
χa(y)NJ(y)dy

COMPUTATIONAL METHODOLOGY FOR AeUe: REAL ARITHMETIC

Cell-Matrix approach (AeUe): Evaluation of the element-level matrices Te, Le and Ge:

Te =

D0
D1
D2

T G00 G01 G02
G10 G11 G12
G20 G21 G22

D0
D1
D2

 , Ge =


D0
D1
D2

T
VG0VG1
VG2

 +

VG0VG1
VG2


T D0

D1
D2


 ,

Le = NTVLN

where NQI = N̂I(x̂Q) andDs
QI = ∇̂N̂I

(
x̂Q

)
· n̂s are n

3
q × n3

pmatrices representing the FE

cell-level basis function values and the basis function gradients respectively at Gauss
quadrature points, with n̂s, s = 0, 1, 2 representing the unit vector along the sth axis, and

V
QQ
L = VL det JewQ

∣∣∣∣
x̂Q

, GQQsd = 1
2

[
(Je)−1 (Je)−T

]
sd

det JewQ
∣∣∣∣
x̂Q

are n3
q × n3

q matrices representing

the mapping to the reference domain (Je is the jacobian matrix of the map from Ωe to Ω̂.).

Matrix-free approach (AeUe): The element level matrix multi-vector products are evaluated
on-the-fly by taking advantage of the tensor structured nature of the FE basis functions and the
quadrature rules instead of precomputing Ke, Vel , etc.D0
D1
D2

 =

D̃0
D̃1
D̃2

N; A0 = NUe ≡ (N1D ⊗ N1D ⊗ N1D ⊗ I)Ue, A1 =

D̃0
D̃1
D̃2

A0, A2 =

VG0VG1
VG2


T

A1,

AeUe = A3 = NT


D̃0
D̃1
D̃2


T 

VG0VG1
VG2

A0 +

G00 G01 G02
G10 G11 G12
G20 G21 G22

A1

 + A2 + VLA0

 .
The computational complexity of evaluating the products D̃kU

e and N1DUe can be further
reduced by utilizing the symmetry relations of the Gauss Quadrature points and the
finite-element nodes, D̃k,i,j = −D̃k,nq−i,p−j and N

1D
i,j = N1D

nq−i,p−j.

KOHN-SHAM DFT EIGENVALUE PROBLEM: COMPLEX ARITHMETIC

Kohn-Sham DFT Equation (Pseudopotential GGA for Periodic Systems)

Hψj(x) =
(

−1
2
∇2 + VL(ρ) + VG(ρ,∇ρ,R) − ik · ∇ + 1

2
|k|2

)
ψj(x) +

∫
Vnl(x, y,R)ψj(y)dy = λjψj(x)

Finite-element discretized equations:

AU := (T + L + G + Vnl − iK)U = MUΛ

KIJ =
∫

VK · (NI(x)∇NJ(x))dx

Matrix-free approach (AeUe):

Ke =

VK0VK1
VK2


T D0

D1
D2

 , A0 = NUe ≡ (N1D⊗N1D⊗N1D⊗I)Ue, A1 =

D̃0
D̃1
D̃2

A0, A2 =

VG0VG1
VG2


T

A1,

A3 =

VK0VK1
VK2


T

A1, AeUe = A4 = NT


D̃0
D̃1
D̃2


T 

VG0VG1
VG2

A0 +

G00 G01 G02
G10 G11 G12
G20 G21 G22

A1

 + A2 + VLA0 − iA3

 .

HARDWARE-AWARE IMPLEMENTATION : TENSOR CONTRACTIONS

CPU implementation strategy
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Figure 3. Pictorial depiction of tensor contractions done on CPUs using the even-odd decomposition strategy. The extraction and first tensor

contraction steps of evaluation of A(e)U(ib,e,t) are depicted for the case of np = 6 and nq = 8. Each block in U represents n2
p sized array of

AVX-512 doubles.

PERFORMANCE BENCHMARKS ON FRONTIER, PRAVEGA AND FUGAKU
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Figure 4. All-electron and KS-DFT GGA Pseudopotential (Real Arithmetic) (Top-Bottom, Left column) and All-electron
and KS-DFT GGA Pseudopotential (Complex Arithmetic) (Top-Bottom, Right column)
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Figure 5. Left: Al nanoparticle 561 atoms, Right: BCC molybdenum 1023 atoms with FEOrder = 8, FP32 precision on
Frontier (Left: N = 4, Right: N = 12), Param Pravega (Left: N = 4, Right: N = 10) and Fugaku (Left: N = 70, Right: N = 200)
supercomputers.

References

[1] G. Panigrahi, N. Kodali, D. Panda, and P. Motamarri, “Fast hardware-aware matrix-free algorithms for higher-order

finite-element discretized matrix multivector products on distributed systems,” Journal of Parallel and Distributed

Computing, vol. 192, p. 104925, 2024.

[2] S. Das, B. Kanungo, V. Subramanian, G. Panigrahi, P. Motamarri, D. Rogers, P. Zimmerman, and V. Gavini, “Large-scale

materials modeling at quantum accuracy: Ab initio simulations of quasicrystals and interacting extended defects in

metallic alloys,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’23, (New York, NY, USA), Association for Computing Machinery, 2023.

[3] G. Panigrahi and P. Motamarri, “Matrix-free algorithms for fast ab initio calculations on distributed cpu architectures using

finite-element discretization,” 2025.

Acknowledgements


