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Introduction

» Gap: While GPUs are standard in modern supercomputers, many > Problem: Existing studies focus on NVIDIA GPUs (CUDA), while Intel

numerical codes still lack GPU support. GPUs (SYCL) remain underexplored despite their distinct syntax and
» Traditional Approach: Portability frameworks (e.g., OpenACC, semantics.

Kokkos [1]) facilitate GPU acceleration but rely on abstraction layers. > Goal: Evaluate Claude Code (an Al Agent by Anthropic) for generating
» New Approach: Generative Al agents can direct code porting and SYCL kernels targeting Intel GPUs.

tuning for specific devices, offering a potential alternative to these > Novelty: Unlike existing studies focusing on CPUs[? or simple BLAS

traditional frameworks. routinesBl4l we target Intel Arc GPUs and BLAS Level 2 & 3 routines.

Method
Al Agent & Workflow Target Benchmarks

» Agent: Claude Code(v2.0.27, model: claude-sonnet-4-5-20250929) » BLAS Routines: representative single-precision BLAS routines
» Perform code optimization autonomously according to the initial » Level 2: SGEMV, SSYMV, STRSV, STRMV
instructions (prompt). » Level 3: SGEMM SSYMM, SSYRK, STRSM
> Input: BLAS++(1) reference code (C++, no parallelization) » Configuration:
» Task Definition: Describe the optimization workflow in CLAUDE.md to » Problem Sizes: Fixed at 32768 (Level 2) and 8192 (Level 3).
instruct Claude Code. » Parameters: Restricted to specific settings (incx=incy=1,
» Defined a step-by-step workflow for development, testing, and trans=transA=transB='N’, uplo=side='L’, diag="N’, Layout="C’)
benchmarking. » Verification:
» Enforced standard C++ and SYCL (vendor libraries are prohibited). » Correctness verified using BLAS++ testing framework.
» Prompting Steps: Provide the following three prompts: » Conducted 4 independent experiments (EX1-EX4) to evaluate the
1. Start the workflow. stability of stochastic code generation.

2. Optimize it further.
3. Optimize it more aggressively.

Result

Evaluation Environment Benchmark Scores
» Hardware: Intel Arc B580 (SPARKLE SB580T-12G0OC)

350 Performance of level 2 routines
» GPU boost clock: 2740 MHz
> Theoretical FP32 peak: 14028.8 GFlops/s 500 -
» Memory Bandwidth: 456.0 GBytes/s 250
» Software: 3200 -
> Intel oneAPI 2025.2.1 with the Math Kernel Library (MKL). & 150 -
/l Compute using register blocking O
# |
Generated Codes 00 -
» STRMV — EX1: » SGEMM - EXG3: Seaarreq bREGN]
for (int64_tj=n-1;j>=0; -j){ for (int64_tj=0;j<n; ++j){ 50 A
TX tmp = Xx[j]; for (int64_t1=0; 1 <k; ++I){ // Load from local memory to registers
for (int64 _ti=n-1;i>=j+1; --i) { scalar_t alpha_Blj = alpha*B(l, j); #pragma unroll ]
X[i] +=tmp * A(i, j); for (int64_ti=0;i<m; ++i) for (inti=0;i < REG_M,; ++i) { 0 -
} C(i, j) +=A(, )*alpha_BlI;; reg_ali] = tileA_ptr[(tid_m + i * WORK_GROUP_M) * TILE_K + kk]; SGEMV SSYMV STRSV STRMV
if (n[?]nun'i;\)o{ ) } } Porting & Optimization } Routine
X[l *=Aq, j);
} #pragma unroll mMKL mEX1 mEX2 mEX3 mEX4
} ’ for (intj=0; )< REG_N; ++j) {
void gomm._kermnel_nn. opt(.L) reg_bl[j] = tileB_ptr[kk * TILE_N + (tid_n +j* WORK_GROUP_N)]; Performance Of level 3 routines
‘ Porting & Optimization { ) T 3/ Compute outer product 9000
(omission) #pragma unroll
queue.stream().submit([&](sycl::handler& h) {. . /I Register arrays for accumulation for (inti=0;i < REG_M; ++i) { 8000 A
h.;?r.a]\trgélllilt_ifgri(_siy(/jcilc;i;range<1>(n), [=](sycl:id<1>i_id) { scalar treg c[REG MI[REG NI: ?:);)rrzgﬂaz l:)nrjoﬂ REG N: +4i) 2000 -

o o .
// Initialize accumulators } reg_cli](j] += reg_al[i] * reg_bI[j];

/I Multiple independent accumulators for better ILP ]
scalar_t sumO = scalar_t(0); #prggma unr_oII _ } 6000
scalar_t sum1 = scalar_t(0); for (inti = 0; i < REG_M; ++i) { } LY
scalar_t sum2 = scalar_t(0); #pragma unroll _ 4 5000 -
scalar_t sum3 = scalar_t(0); for (int - O J_ < _REG—N; ) item.barrier(sycl::access::.fence_space::local_space); (@)
scalar_t sum4 = scalar_t(0); reg_cfillil = O; } L 4000 -
scalar_t sum5 = scalar_t(0); } O
scalar_t sum6 = scalar_t(0); ) I/ Write results back to global memory with optimized pattern 3000 -
scalar_t sum7 = scalar_t(0); scalar_t alpha_val = alpha;

// Precompute constants scalar tbeta val = beta:

const int num_threads = WORK_GROUP_M * WORK_GROUP_N; - = ! 2000 -

I/l 8-way unrolling with 8 independent accumulators

64 ti= 0 const int tileA_size = TILE_M * TILE_K; aOma UNro
}0:6(1.—? o [+28) const int tileB_size = TILE_K * TILE_N; iy iz O ! REG.M; ++i) { 1000 -
232? :: 2{: :J(J:I1<1)a3 ;2&1:;?51(]1) * incx]; // Loop over k-dimension in tiles ?:)prrzg’:rjlazli)r?rjoﬂ REG_N: ++) {
sum2 += Afi + (j+2) * Ida] * X[(j+2) * incx[: forl/(igm‘_‘—t_ kt=0; kt <k; kt +=TILE_K){ _ int row = block_m + tid_m + i * WORK_GROUP_M: 0 -
sum3 += A[i + (j+3) * Ida] * x[(+3) * incx]; L pt'(;“t'ilzeiCo‘i)rf’eglatt“ﬁ(;oiﬁ]‘”% 'rctf’at'tefced f‘“di‘r’]ecw”zed pattern int col = block_n + tid_n +j * WORK_GROUP_N; SGEMM SSYMMR i SSYRK STRSM
sumd4 += A[i + (j+4) * Ida] * X[(j+4) * incX]; oad tile A using fiat Indexing for betier coalescing if (row < m && col < n) { outine
sums += A[! N (J:+5) , \dal” X[(J:+5) . ?ncx]; for)rrgg??cjlxu:r’[%l'zidx < tileA_size; idx += num_threads) { ?nt O = row T oo e BMKL mEX1 mEX2 WEX3 mEX4
U7 4= AL+ (+7)* idal * X0+7) * o] nti=ide TILE K ) o = atpha, val* e ]
’ int j = idx % TILE_K; olee - — .
} o | N ::t J';‘(’)‘;":ktt"f‘j’;k—m t } IC[id{x] = alpha_val * reg_cli][j] + beta_val * C[idx]; > Level 2
cclar {imp = (sum0 # ) (um2 + ) + (eumd | | S0 ? » Achieved performance comparable to or
e mm—" | Yo =Alrow ol o exceeding MKL in multiple cases.
o< oo , e s qomm > Likely due to MKL under-optimization or the
) /l Load tile B using flat indexing for better coalescing { (omission) generated Code belng SpeCIallzed for SpeCIfIC
// Diagonal #prggma uimr(.)II_ZI _ . _ sycl_queue.submit([&](sycl::handler& h) { ]
" (Ponunit')o‘{[_ N forir(:tnit;di)((j;/tl_(rjl,l_l(éx:j_tlleB_Slze, idx += num_threads) { Lomisslilorl\)]c ( Opt|ons ]
e;nep AT A nes intj=idx%TILE_f\l; .psarca::er’]_?;n e<2>(global_size, local_size),
i :mp{+= X[i * incx]; ::: g())\;v:bﬁ:)::-ki; N+ [=y](IsycI:(Ij::_ng‘_t?tler22<2(tglit%)_rlnl)_Aft | » - ) > Level 3 :
S~ scalar_t* tileA_ptr = tileA.template
et~ row < k8 co <) R otk el » Performance fell short of MKL.
- | val = B[row +col” Idb]’ et_multi r<S_C ::acce_ss:: ecora.e -:No>().get(); - - . o o
});})’ 11 B_ptrlidx] = val: 9L It_gg)émrrzl_:(emel_nnijopt(m,tn(fi K, aléz]g, ;f,)’lda, B, Idb, beta, C, Idc, > H Ig h Va rlance: Slg n IflCa nt pe rfO rmanCe
leb_plriidx] = val, item, tileA_ptr, tileB_ptr); ] .
} o e fluctuation observed across trials (EX1-EX4),
item.barrier(sycl::access::fence_space::local_space); } (o’mission) |nd|Cat|ng StOChaSt|C|ty |n COde generatlon .
Conclusion
» Feasibility: Validated that Claude Code can generate functional SYCL » Future Outlook: Highlights the potential for LLMs to reduce vendor
kernels for Intel GPUs from simple BLAS codes for CPUs lock-in and support hardware diversity. Future work will investigate
» Performance Variance: Performance varied across trials, ranging from capabilities for generating more practical applications.

MKL-equivalent speeds to significantly lower efficiency.
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