
Evaluation of the Capability of Coding AI in Generating

SYCL-Based Numerical Computation Codes for Intel GPUs

SCA/HPCAsia2026

Koki Morita1, Daichi Mukunoki2, Tetsuya Hoshino2, Takahiro Katagiri2

1. Graduate School of Informatics, Nagoya University 2. Information Technology Center, Nagoya University

Introduction
➢ Gap: While GPUs are standard in modern supercomputers, many

numerical codes still lack GPU support.

➢ Traditional Approach: Portability frameworks (e.g., OpenACC,

Kokkos [1]) facilitate GPU acceleration but rely on abstraction layers.

➢ New Approach: Generative AI agents can direct code porting and

tuning for specific devices, offering a potential alternative to these

traditional frameworks.

➢ Problem: Existing studies focus on NVIDIA GPUs (CUDA), while Intel

GPUs (SYCL) remain underexplored despite their distinct syntax and

semantics.

➢ Goal: Evaluate Claude Code (an AI Agent by Anthropic) for generating

SYCL kernels targeting Intel GPUs.

➢ Novelty: Unlike existing studies focusing on CPUs[2] or simple BLAS

routines[3][4], we target Intel Arc GPUs and BLAS Level 2 & 3 routines.

Method
AI Agent & Workflow

➢ Agent: Claude Code(v2.0.27, model: claude-sonnet-4-5-20250929)

➢ Perform code optimization autonomously according to the initial

instructions (prompt).

➢ Input: BLAS++(1) reference code (C++, no parallelization)

➢ Task Definition: Describe the optimization workflow in CLAUDE.md to

instruct Claude Code.

➢ Defined a step-by-step workflow for development, testing, and

benchmarking.

➢ Enforced standard C++ and SYCL (vendor libraries are prohibited).

➢ Prompting Steps: Provide the following three prompts:

1. Start the workflow.

2. Optimize it further.

3. Optimize it more aggressively.

Target Benchmarks

➢ BLAS Routines: representative single-precision BLAS routines

➢ Level 2: SGEMV, SSYMV, STRSV, STRMV

➢ Level 3: SGEMM SSYMM, SSYRK, STRSM

➢ Configuration:

➢ Problem Sizes: Fixed at 32768 (Level 2) and 8192 (Level 3).

➢ Parameters: Restricted to specific settings (incx=incy=1,

trans=transA=transB=‘N’, uplo=side=‘L’, diag=‘N’, Layout=‘C’)

➢ Verification:

➢ Correctness verified using BLAS++ testing framework.

➢ Conducted 4 independent experiments (EX1–EX4) to evaluate the

stability of stochastic code generation.

Result
Evaluation Environment
➢ Hardware: Intel Arc B580 (SPARKLE SB580T-12GOC)

➢ GPU boost clock: 2740 MHz

➢ Theoretical FP32 peak: 14028.8 GFlops/s

➢ Memory Bandwidth: 456.0 GBytes/s

➢ Software:

➢ Intel oneAPI 2025.2.1 with the Math Kernel Library (MKL).

0

50

100

150

200

250

300

350

SGEMV SSYMV STRSV STRMV

G
B

y
te

s
/s

Routine

Performance of level 2 routines

MKL EX1 EX2 EX3 EX4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SGEMM SSYMM SSYRK STRSM

G
F

lo
p
s
/s

Routine

Performance of level 3 routines

MKL EX1 EX2 EX3 EX4

Benchmark Scores

References
[1] C. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era.” IEEE Transactions on Parallel and Distributed Systems. 2022

[2] D. Mukunoki et al. “Performance Evaluation of General Purpose Large Language Models for Basic Linear Algebra Subprograms Code Generation.” arXiv:2507.04697. 2025

[3] P. Valero-Lara et al. “ChatBLAS: The First AI-Generated and Portable BLAS Library. ” SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2024

[4] Q. Zhou et al. “QiMeng-GEMM: Automatically Generating High-Performance Matrix Multiplication Code by Exploiting Large Language Models.” AAAI-25 39m 21. 2025

(1) https://icl.bitbucket.io/blaspp/

Generated Codes
➢ STRMV – EX1:

for (int64_t j = 0; j < n; ++j) {

for (int64_t l = 0; l < k; ++l) {

scalar_t alpha_Blj = alpha*B(l, j);

for (int64_t i = 0; i < m; ++i)

C(i, j) += A(i, l)*alpha_Blj;

}

}

➢ SGEMM – EX3:

queue.stream().submit([&](sycl::handler& h) {

h.parallel_for(sycl::range<1>(n), [=](sycl::id<1> i_id) {

int64_t i = i_id[0];

// Multiple independent accumulators for better ILP

scalar_t sum0 = scalar_t(0);

scalar_t sum1 = scalar_t(0);

scalar_t sum2 = scalar_t(0);

scalar_t sum3 = scalar_t(0);

scalar_t sum4 = scalar_t(0);

scalar_t sum5 = scalar_t(0);

scalar_t sum6 = scalar_t(0);

scalar_t sum7 = scalar_t(0);

// 8-way unrolling with 8 independent accumulators

int64_t j = 0;

for (; j + 7 < i; j += 8) {

sum0 += A[i + j * lda] * x[j * incx];

sum1 += A[i + (j+1) * lda] * x[(j+1) * incx];

sum2 += A[i + (j+2) * lda] * x[(j+2) * incx];

sum3 += A[i + (j+3) * lda] * x[(j+3) * incx];

sum4 += A[i + (j+4) * lda] * x[(j+4) * incx];

sum5 += A[i + (j+5) * lda] * x[(j+5) * incx];

sum6 += A[i + (j+6) * lda] * x[(j+6) * incx];

sum7 += A[i + (j+7) * lda] * x[(j+7) * incx];

}

// Combine with tree reduction for minimal latency

scalar_t tmp = ((sum0 + sum1) + (sum2 + sum3)) + ((sum4

+ sum5) + (sum6 + sum7));

// Handle remainder

for (; j < i; ++j) {

tmp += A[i + j * lda] * x[j * incx];

}

// Diagonal

if (nonunit) {

tmp += A[i + i * lda] * x[i * incx];

} else {

tmp += x[i * incx];

}

x_temp[i] = tmp;

});

});

➢ Level 2:

➢ Achieved performance comparable to or

exceeding MKL in multiple cases.

➢ Likely due to MKL under-optimization or the

generated code being specialized for specific

options.

➢ Level 3:

➢ Performance fell short of MKL.

➢ High Variance: Significant performance

fluctuation observed across trials (EX1-EX4),

indicating stochasticity in code generation.

Conclusion
➢ Feasibility: Validated that Claude Code can generate functional SYCL

kernels for Intel GPUs from simple BLAS codes for CPUs

➢ Performance Variance: Performance varied across trials, ranging from

MKL-equivalent speeds to significantly lower efficiency.

➢ Future Outlook: Highlights the potential for LLMs to reduce vendor

lock-in and support hardware diversity. Future work will investigate

capabilities for generating more practical applications.

// Compute using register blocking

#pragma unroll

for (int kk = 0; kk < TILE_K; ++kk) {

scalar_t reg_a[REG_M];

scalar_t reg_b[REG_N];

// Load from local memory to registers

#pragma unroll

for (int i = 0; i < REG_M; ++i) {

reg_a[i] = tileA_ptr[(tid_m + i * WORK_GROUP_M) * TILE_K + kk];

}

#pragma unroll

for (int j = 0; j < REG_N; ++j) {

reg_b[j] = tileB_ptr[kk * TILE_N + (tid_n + j * WORK_GROUP_N)];

}

// Compute outer product

#pragma unroll

for (int i = 0; i < REG_M; ++i) {

#pragma unroll

for (int j = 0; j < REG_N; ++j) {

reg_c[i][j] += reg_a[i] * reg_b[j];

}

}

}

item.barrier(sycl::access::fence_space::local_space);

}

// Write results back to global memory with optimized pattern

scalar_t alpha_val = alpha;

scalar_t beta_val = beta;

#pragma unroll

for (int i = 0; i < REG_M; ++i) {

#pragma unroll

for (int j = 0; j < REG_N; ++j) {

int row = block_m + tid_m + i * WORK_GROUP_M;

int col = block_n + tid_n + j * WORK_GROUP_N;

if (row < m && col < n) {

int idx = row + col * ldc;

if (beta_val == scalar_t(0)) {

C[idx] = alpha_val * reg_c[i][j];

} else {

C[idx] = alpha_val * reg_c[i][j] + beta_val * C[idx];

}

}

}

}

}

void gemm(...)

{

(omission)

sycl_queue.submit([&](sycl::handler& h) {

(omission)

h.parallel_for(

sycl::nd_range<2>(global_size, local_size),

[=](sycl::nd_item<2> item) {

scalar_t* tileA_ptr = tileA.template

get_multi_ptr<sycl::access::decorated::no>().get();

scalar_t* tileB_ptr = tileB.template

get_multi_ptr<sycl::access::decorated::no>().get();

gemm_kernel_nn_opt(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc,

item, tileA_ptr, tileB_ptr);

});

});

(omission)

}

void gemm_kernel_nn_opt(...)

{

(omission)

// Register arrays for accumulation

scalar_t reg_c[REG_M][REG_N];

// Initialize accumulators

#pragma unroll

for (int i = 0; i < REG_M; ++i) {

#pragma unroll

for (int j = 0; j < REG_N; ++j) {

reg_c[i][j] = 0;

}

}

// Precompute constants

const int num_threads = WORK_GROUP_M * WORK_GROUP_N;

const int tileA_size = TILE_M * TILE_K;

const int tileB_size = TILE_K * TILE_N;

// Loop over k-dimension in tiles

for (int64_t kt = 0; kt < k; kt += TILE_K) {

// Optimized cooperative loading - coalesced and vectorized pattern

// Load tile A using flat indexing for better coalescing

#pragma unroll 2

for (int idx = tid; idx < tileA_size; idx += num_threads) {

int i = idx / TILE_K;

int j = idx % TILE_K;

int row = block_m + i;

int col = kt + j;

scalar_t val = 0;

if (row < m && col < k) {

val = A[row + col * lda];

}

tileA_ptr[idx] = val;

}

// Load tile B using flat indexing for better coalescing

#pragma unroll 2

for (int idx = tid; idx < tileB_size; idx += num_threads) {

int i = idx / TILE_N;

int j = idx % TILE_N;

int row = kt + i;

int col = block_n + j;

scalar_t val = 0;

if (row < k && col < n) {

val = B[row + col * ldb];

}

tileB_ptr[idx] = val;

}

item.barrier(sycl::access::fence_space::local_space);

for (int64_t j = n-1; j >= 0; --j) {

TX tmp = x[j];

for (int64_t i = n-1; i >= j+1; --i) {

x[i] += tmp * A(i, j);

}

if (nonunit) {

x[j] *= A(j, j);

}

}

Porting & Optimization

Porting & Optimization

	スライド 1

