SCA/HPCAsiIa2026

Evaluation of the Capability of Coding Al in Generating
SYCL-Based Numerical Computation Codes for Intel GPUs

Koki Morita!, Daichi Mukunoki?, Tetsuya Hoshino?, Takahiro Katagiri?
1. Graduate School of Informatics, Nagoya University 2. Information Technology Center, Nagoya University

Introduction

» Gap: While GPUs are standard in modern supercomputers, many > Problem: Existing studies focus on NVIDIA GPUs (CUDA), while Intel

numerical codes still lack GPU support. GPUs (SYCL) remain underexplored despite their distinct syntax and
» Traditional Approach: Portability frameworks (e.g., OpenACC, semantics.

Kokkos [1]) facilitate GPU acceleration but rely on abstraction layers. > Goal: Evaluate Claude Code (an Al Agent by Anthropic) for generating
» New Approach: Generative Al agents can direct code porting and SYCL kernels targeting Intel GPUs.

tuning for specific devices, offering a potential alternative to these > Novelty: Unlike existing studies focusing on CPUs[? or simple BLAS

traditional frameworks. routinesBl4l we target Intel Arc GPUs and BLAS Level 2 & 3 routines.

Method
Al Agent & Workflow Target Benchmarks

» Agent: Claude Code(v2.0.27, model: claude-sonnet-4-5-20250929) » BLAS Routines: representative single-precision BLAS routines
» Perform code optimization autonomously according to the initial » Level 2: SGEMV, SSYMV, STRSV, STRMV
instructions (prompt). » Level 3: SGEMM SSYMM, SSYRK, STRSM
> Input: BLAS++(1) reference code (C++, no parallelization) » Configuration:
» Task Definition: Describe the optimization workflow in CLAUDE.md to » Problem Sizes: Fixed at 32768 (Level 2) and 8192 (Level 3).
instruct Claude Code. » Parameters: Restricted to specific settings (incx=incy=1,
» Defined a step-by-step workflow for development, testing, and trans=transA=transB='N’, uplo=side='L’, diag="N’, Layout="C’)
benchmarking. » Verification:
» Enforced standard C++ and SYCL (vendor libraries are prohibited). » Correctness verified using BLAS++ testing framework.
» Prompting Steps: Provide the following three prompts: » Conducted 4 independent experiments (EX1-EX4) to evaluate the
1. Start the workflow. stability of stochastic code generation.

2. Optimize it further.
3. Optimize it more aggressively.

Result

Evaluation Environment Benchmark Scores
» Hardware: Intel Arc B580 (SPARKLE SB580T-12G0OC)

350 Performance of level 2 routines
» GPU boost clock: 2740 MHz
> Theoretical FP32 peak: 14028.8 GFlops/s 500 -
» Memory Bandwidth: 456.0 GBytes/s 250
» Software: 3200 -
> Intel oneAPI 2025.2.1 with the Math Kernel Library (MKL). & 150 -
/l Compute using register blocking O
|
Generated Codes 00 -
» STRMV — EX1: » SGEMM - EXG3: Seaarreq bREGN]
for (int64_tj=n-1;j>=0; -j){ for (int64_tj=0;j<n; ++j){ 50 A
TX tmp = Xx[j]; for (int64_t1=0; 1 <k; ++I){ // Load from local memory to registers
for (int64 _ti=n-1;i>=j+1; --i) { scalar_t alpha_Blj = alpha*B(l, j); #pragma unroll]
X[i] +=tmp * A(i, j); for (int64_ti=0;i<m; ++i) for (inti=0;i < REG_M,; ++i) { 0 -
} C(i, j) +=A(,)*alpha_BlI;; reg_ali] = tileA_ptr[(tid_m + i * WORK_GROUP_M) * TILE_K + kk]; SGEMV SSYMV STRSV STRMV
if (n[?]nun'i;\)o{) } } Porting & Optimization } Routine
X[l *=Aq, j);
} #pragma unroll mMKL mEX1 mEX2 mEX3 mEX4
} ’ for (intj=0;)< REG_N; ++j) {
void gomm._kermnel_nn. opt(.L) reg_bl[j] = tileB_ptr[kk * TILE_N + (tid_n +j* WORK_GROUP_N)]; Performance Of level 3 routines
‘ Porting & Optimization {) T 3/ Compute outer product 9000
(omission) #pragma unroll
queue.stream().submit([&](sycl::handler& h) {. . /I Register arrays for accumulation for (inti=0;i < REG_M; ++i) { 8000 A
h.;?r.a]\trgélllilt_ifgri(_siy(/jcilc;i;range<1>(n), [=](sycl:id<1>i_id) { scalar treg c[REG MI[REG NI: ?:);)rrzgﬂaz l:)nrjoﬂ REG N: +4i) 2000 -

o o .
// Initialize accumulators } reg_cli](j] += reg_al[i] * reg_bI[j];

/I Multiple independent accumulators for better ILP]
scalar_t sumO = scalar_t(0); #prggma unr_oII _ } 6000
scalar_t sum1 = scalar_t(0); for (inti = 0; i < REG_M; ++i) { } LY
scalar_t sum2 = scalar_t(0); #pragma unroll _ 4 5000 -
scalar_t sum3 = scalar_t(0); for (int - O J_ < _REG—N;) item.barrier(sycl::access::.fence_space::local_space); (@)
scalar_t sum4 = scalar_t(0); reg_cfillil = O; } L 4000 -
scalar_t sum5 = scalar_t(0); } O
scalar_t sum6 = scalar_t(0);) I/ Write results back to global memory with optimized pattern 3000 -
scalar_t sum7 = scalar_t(0); scalar_t alpha_val = alpha;

// Precompute constants scalar tbeta val = beta:

const int num_threads = WORK_GROUP_M * WORK_GROUP_N; - = ! 2000 -

I/l 8-way unrolling with 8 independent accumulators

64 ti= 0 const int tileA_size = TILE_M * TILE_K; aOma UNro
}0:6(1.—? o [+28) const int tileB_size = TILE_K * TILE_N; iy iz O ! REG.M; ++i) { 1000 -
232? :: 2{: :J(J:I1<1)a3 ;2&1:;?51(]1) * incx]; // Loop over k-dimension in tiles ?:)prrzg’:rjlazli)r?rjoﬂ REG_N: ++) {
sum2 += Afi + (j+2) * Ida] * X[(j+2) * incx[: forl/(igm‘_‘—t_ kt=0; kt <k; kt +=TILE_K){ _ int row = block_m + tid_m + i * WORK_GROUP_M: 0 -
sum3 += A[i + (j+3) * Ida] * x[(+3) * incx]; L pt'(;“t'ilzeiCo‘i)rf’eglatt“ﬁ(;oiﬁ]‘”% 'rctf’at'tefced f‘“di‘r’]ecw”zed pattern int col = block_n + tid_n +j * WORK_GROUP_N; SGEMM SSYMMR i SSYRK STRSM
sumd4 += A[i + (j+4) * Ida] * X[(j+4) * incX]; oad tile A using fiat Indexing for betier coalescing if (row < m && col < n) { outine
sums += A[! N (J:+5) , \dal” X[(J:+5) . ?ncx]; for)rrgg??cjlxu:r’[%l'zidx < tileA_size; idx += num_threads) { ?nt O = row T oo e BMKL mEX1 mEX2 WEX3 mEX4
U7 4= AL+ (+7)* idal * X0+7) * o] nti=ide TILE K) o = atpha, val* e]
’ int j = idx % TILE_K; olee - — .
} o | N ::t J';‘(’)‘;":ktt"f‘j’;k—m t } IC[id{x] = alpha_val * reg_cli][j] + beta_val * C[idx]; > Level 2
cclar {imp = (sum0 #) (um2 +) + (eumd | | S0 ? » Achieved performance comparable to or
e mm—" | Yo =Alrow ol o exceeding MKL in multiple cases.
o< oo , e s qomm > Likely due to MKL under-optimization or the
) /l Load tile B using flat indexing for better coalescing { (omission) generated Code belng SpeCIallzed for SpeCIfIC
// Diagonal #prggma uimr(.)II_ZI _ . _ sycl_queue.submit([&](sycl::handler& h) {]
" (Ponunit')o‘{[_ N forir(:tnit;di)((j;/tl_(rjl,l_l(éx:j_tlleB_Slze, idx += num_threads) { Lomisslilorl\)]c (Opt|ons]
e;nep AT A nes intj=idx%TILE_f\l; .psarca::er’]_?;n e<2>(global_size, local_size),
i :mp{+= X[i * incx]; ::: g())\;v:bﬁ:)::-ki; N+ [=y](IsycI:(Ij::_ng‘_t?tler22<2(tglit%)_rlnl)_Aft | » -) > Level 3 :
S~ scalar_t* tileA_ptr = tileA.template
et~ row < k8 co <) R otk el » Performance fell short of MKL.
- | val = B[row +col” Idb]’ et_multi r<S_C ::acce_ss:: ecora.e -:No>().get(); - - . o o
});})’ 11 B_ptrlidx] = val: 9L It_gg)émrrzl_:(emel_nnijopt(m,tn(fi K, aléz]g, ;f,)’lda, B, Idb, beta, C, Idc, > H Ig h Va rlance: Slg n IflCa nt pe rfO rmanCe
leb_plriidx] = val, item, tileA_ptr, tileB_ptr);] .
} o e fluctuation observed across trials (EX1-EX4),
item.barrier(sycl::access::fence_space::local_space); } (o’mission) |nd|Cat|ng StOChaSt|C|ty |n COde generatlon .
Conclusion
» Feasibility: Validated that Claude Code can generate functional SYCL » Future Outlook: Highlights the potential for LLMs to reduce vendor
kernels for Intel GPUs from simple BLAS codes for CPUs lock-in and support hardware diversity. Future work will investigate
» Performance Variance: Performance varied across trials, ranging from capabilities for generating more practical applications.

MKL-equivalent speeds to significantly lower efficiency.

References

C. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era.” IEEE Transactions on Parallel and Distributed Systems. 2022

D. Mukunoki et al. “Performance Evaluation of General Purpose Large Language Models for Basic Linear Algebra Subprograms Code Generation.” arXiv:2507.04697. 2025

P. Valero-Lara et al. “ChatBLAS: The First Al-Generated and Portable BLAS Library. ” SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2024
Q. Zhou et al. “QiMeng-GEMM: Automatically Generating High-Performance Matrix Multiplication Code by Exploiting Large Language Models.” AAAI-25 39m 21. 2025

(1) https://icl.bitbucket.io/blaspp/

1
2
3
4

	スライド 1

