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Il Introduction

Quantum circuit simulation plays a crucial role in developing and validating quantum
algorithms on classical supercomputers. However, the exponential state space growth (2" for n
qubits) demands massive computational resources, making large-scale HPC systems
indispensable. While previous research demonstrated impressive simulation milestones,
comprehensive understanding of how diverse algorithms scale on modern supercomputers
remains limited, leaving practitioners without systematic guidance for resource allocation.

Il Challenges in Quantum Circuit Simulation at Scale
2 Unknown resource requirements for different algorithms on large-scale HPC systems

X Limited understanding of how parallelization configuration affects simulation performance
X Unclear trade-offs between execution time, energy consumption, and rank density
X{ No systematic guidance for practitioners to make informed resource allocation decisions

Il Systematic Evaluations of Various Quantum Algorithms on Fugaku
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III . . . . . Evaluated quantum algorithms and gate statistics
Key Findings and Practical Guidelines (abbreviations in parentheses)
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Il Conclusions and Future Work > Trade-off: Faster execution vs energy efficiency

This study provides practical guidance for quantum circuit simulation on HPC systems. State
vector size (not gate count) determines scaling behavior—large state vectors achieve 7-12X

speedup while small state vectors show negative scaling. Rank density causes up to 4X
performance variation, and dense packing offers >10X energy savings. Future work includes

weak scaling evaluation and performance portability across different HPC architectures.
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