
メインカラー

AIST RED Black

テキスト テキスト

テキスト テキスト

テキスト テキスト

領域カラー

エネ・環境 生命工学 情報・人間 材料・化学

エレ・製造 地質調査 量子・AI計量標準

サブカラー

テキスト テキストテキスト

Green BlueOrange Purple

テキスト

Federated Learning (FL) has played a critical role in supporting the development of AI-based privacy-sensitive applications. 
We introduce ESFL, a novel FL scheme addressing the challenges of developing FL in the Thing-Edge-Cloud environment. 

ESFL: Edge-assisted Split Federated Learning

Future Work

• Study the impact of ESFL on different non-IID 

scenarios.

• Study the impact of data selection mechanisms at 

edge-servers on the performance of ESFL.

• Study the computational overhead, e.g., 

introduced by data compression/decompression.
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Challenges (What?)

o Communication bottleneck at cloud server 
due to the large number of devices.

o Resource constraints at IoT devices.

o Low accuracy due to heterogeneous data 
distributions (non-IID data).

Research Approach (How?)
Centralized training of a high-capacity model on the cloud. 

o Collecting data from multiple IoT devices to cloud servers to 
mitigate the non-IID issues.

• Privacy → collecting feature vector of the data.

o Perform the feature vector preprocessing at edge servers to 
reduce communication load to the cloud. 

ESFL Training Framework

• Base model is trained on devices with a lightweight head model using FedAvg. 

• Base model is then utilized to extract feature representations from local data, 
which are then sent to the cloud for training Core model.

• Performs the edge-side pre-processing of feature data before transmitting to 
the cloud to reduce the communication overhead by (1) Random select p% of 
data and (2) data compression, e.g., using ZeroQuantV2.

A. Overall System

Original model is divided into a lightweight 
Base model & Core model.

• Base and Core models are trained separately, 
avoiding traffic communication congestion.
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An example of a 
split model using 

ResNet-18

B. Training process

Dataset Cifar100

Non-IID Dirichlet (0.05)

No. devices 100

No. edges 20

Training 500 rounds

Model ResNet-18

Preliminary Result

A. Experimental settings B. Higher testing accuracy & less communication to the cloud

• ESFL-60 achieves the best trade-
off, reaching a 63.66% accuracy.

• ESFL exhibits faster convergence 
than competing baselines.

• ESFL robust across different 
sampling ratios p

• ZeroQuantV2 provides substantial 
compression with minimal 
performance degradation.

Baseline approaches: 
• FedAvg: training full model at devices.
• SFL: partially training at cloud.
• FLATEC: training at edge servers

• ESFL-p: ESFL with p% features data are randomly 
selected at edge servers.

• ESFL-NQ: ESFL without quantization.
• Traffic: average traffic load to the cloud per round in MB. 

This paper is based on results obtained from the project, “Research and Development Project of the Enhanced infrastructures for Post-5G Information 

and Communication Systems” (JPNP20017), commissioned by the New Energy and Industrial Technology Development Organization (NEDO).
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