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Federated Learning (FL) has played a critical role in supporting the development of Al-based privacy-sensitive applications.
We introduce ESFL, a novel FL scheme addressing the challenges of developing FL in the Thing-Edge-Cloud environment.

Challenges (What?) Research Approach (How?)
o Centralized training of a high-capacity model on the cloud.
= o Communication bottleneck at cloud server | | |
due to the large number of devices. o Collecting data from multiple IoT devices to cloud servers to
/\ | | mitigate the non-IID issues.
Resource constraints at IoT devices. | _
* Privacy -2 collecting feature vector of the data.
Low accuracy due to heterogeneous data |
@ distributions (non-IID data). o Perform the feature vector preprocessing at edge servers to
‘D o D‘ reduce communication load to the cloud.
ESFL Training Framework
A. Overall System B. Training process
Original model is divided into a lightweight - Base model is trained on devices with a lightweight head model using FedAvg.
Base model & Core model. - Base model is then utilized to extract feature representations from local data,
. Base and Core models are trained separately, which are then sent to the cloud for training Core model.
avoiding traffic communication congestion. - Performs the edge-side pre-processing of feature data before transmitting to
the cloud to reduce the communication overhead by (1) Random select p% of
Base Core f——= Cloud layer: data and (2) data compression, e.g., using ZeroQuantV?2.
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Preliminary Result
A. Experimental settings B. Higher testing accuracy & less communication to the cloud
Dataset Cifar100 e Contalize = FedAvg - SFL| | Method | Acc. (%) | Traffic « ESFL-60 achieves the best trade-
X | FLATEC -+ ESFL-60 FedAvg | 56.55 898 off, reaching a 63.66% accuracy.
Non-IID Dirichlet (0.05 > 651 SFL 51.21 13110 .
(0.05) § FLATEC 16219 1334 » ESFL exhibits faster convergence
No. devices | 100 §50- i 00 15008 24 than competing baselines.
No. edges 20 "y ESFL-40 ]63.07 | 449 « ESFL robust across different
Training 500 rounds 35- ESFL-80 | 63.21 858
Model CesNet-18 0 100 200 300 400 500 |ESFL-100]63.43  |1063 » ZeroQuantV2 provides substantial
Communication round ESFL-NOQ | 63.92 2658 compression with minimal
: _ erformance degradation.
Baseline approaches: « ESFL-p: ESFL with p% features data are randomly P J
« FedAvg: training full model at devices. selected at edge servers.
« SFL: partially training at cloud. « ESFL-NQ: ESFL without quantization.
« FLATEC: training at edge servers « Traffic: average traffic load to the cloud per round in MB.
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