
GPU porting of the bottleneck kernel InteractionForcesFluid in DualSPHysics
 Waku Hasegawa†, Aoto Abe†, Dai Wada†, and Takaaki Miyajima†, †Meiji University (Japan),
 e-mail:takaaki.miyajima@cs.meiji.ac.jp

Overview

Physics simulations are utilized across various fields such as engineering and

computational sciences, significantly contributing to the reduction of prototyping

costs in product development.The open-source fluid analysis program

DualSPHysics, based on the Smoothed Particle Hydrodynamics (SPH)

method, has seen expanding applications in engineering.

In the SPH method, increasing the number of particles improves accuracy, but

also increases the computational load.GPGPU (General-Purpose computing

on Graphics Processing Units) has gathered attention as a potential solution to

this issue; however, when the codebase is large, porting to GPUs becomes

difficult even when using OpenACC. In this study, we performed performance

optimization on the InteractionForcesFluid function, which is the primary

computational bottleneck in the entire DualSPHysics system.

Through several optimizations such as sync avoidance, formula replacement,

and templating particle attributes, a maximum speedup of 9.39 times compared

to the CPU version was achieved.

Smoothed Particle Hydrodynamics (SPH)

DualSPHysics

Comparison of Particle Methods and Grid Methods

➢ Particle methods are Lagrangian approaches

 that discretize matter as particles

➢ Particle methods can flexibly handle complex

 physical behaviors such as free surfaces and

 deformations

Open-source fluid analysis software based on the SPH method

Bottleneck

➢ In particle methods, a significant portion of computation

 time is spent searching for “neighbor particles” that

 influence the target particle and calculating the effects

 they exert

Particle MethodGrid Method

neighbor particles and affct particles

Particle Attributes

➢ Bound Particles representing immovable objects such as walls and obstacles

➢ Float Particles constituting movable rigid bodies such as wood or blocks
floating on water

➢ Fluid Particles constituting fluids like water Float particles

Fluid particles
Bound particles

Four Optimizations of Interaction Calculation
Functions for GPU using OpenACC

V01: DualSPHysics’s OpenMP implementation (baseline)

V02: Naive GPU porting and avoiding unnecessary data transfer

➢ Lifetime of transfer target data and transfer data

➢ Read-only variables: Use copyin clause

➢ Modifiable variables: Use copy specification

➢ Conditionally used variables: Use if-conditional data

 regions to prevent redundant data transfers

➢ Consecutive calls to the same function for different particle attributes (Bound
/ Float / Fluid)

V03: Avoiding synchronization on reduction with loop division

➢ OpenACC provides reduction directives, which are

 convenient but carry the risk of performance

 degradation due to

 synchronization.

➢ Avoid synchronization by using temporary arrays

 and post-reduction aggregation, accelerating the

 main loop.

➢ Disadvantage: Increased global memory access.

V04: Reducing instruction latency through formula replacement

➢ The pow function is used for
the density diffusion term.

➢ Compared to other instructions,
it had approximately five times
more stall cycles.

➢ Replacing pow with operations using log and exp

 reduces the number of instructions; precision requires

 further consideration.

V05: Static resolution of particle attribute if statements via templates

➢ In thread-level parallelism, if statements cause execution divergence.

➢ On GPUs, both the taken and non-taken paths of an if statement

 are executed.

➢ Conditions inside loops
➢ Execution configuration: kernel structure and the algorithms used

➢ Particle attributes: Fluid, Bound, Float

➢ Computational branching: skipping computations based on distance, etc.

➢ Previous Research: Template-Based Solution for
Access Patterns in Adaptive Grid Partitioning [5]

➢ Conditional Branches Solved by Templates:
Particle Attributes... Fluid, Boundary, Floating

Profile Results: Awaiting Results

NSight Profile results: pow function stall

𝑛 𝑥 = exp(
1

𝑛
 ∙ log 𝑥)

if

true false

The unused path is discarded.

Execution divergence
caused by if statements

References
[1]高田貴正、新田知生、大野和彦：“Sph法による流体解析のgpu上での高速化”, ハイパフォーマンスコンピューティングと計算科学シンポジ
ウム論文集,第2017巻, pp. 26–35 (2017).
[2] J. J. Monaghan: “Smoothed particle hydrodynamics”, Reports on Progress in Physics, 68, 8, p. 1703 (2005).
[3] J. M. Domınguez, G. Fourtakas, C. Altomare, R. B. Canelas, A. Tafuni, O. Garcıa-Feal, I. Martınez-Estevez, A. Mokos, R. Vacondio, A. J. C. Crespo, B. D. Rogers,
P. K. Stansby and M. G´omez-Gesteira: “Dualsphysics: from fluid dynamics to multiphysics problems”, Compu tational Particle Mechanics, 9, 5, p. 867–895
(2021).
[4] S. Long, X.-W. Guo, X. Fan, C. Li, K. Wong, R. Zhao, Y. Liu, S. Zhang and C. Yang: “Paralleldualsphysics: sup porting efficient parallel fluid simulations through
mpi enabled sph method”, Proceedings of the 51st Interna tional Conference on Parallel Processing, ICPP ’22, ACM, p. 1–11 (2022).
[5] 長谷川雄太, 青木尊之：“ステンシル計算の高速化のためのc++テンプレートによるgpuカーネル生成”,Technical Report 13, 東京工業大学 (2015)

Evaluation of four optimizations

OS Ubuntu 20.04.6 LTS

CPU AMD EPYC 7343 3.2GHz

GPU NVIDIA A100 PCIE 40GB

Mem HMA82GR7CJR8N-XN DDR4 16GB
3200MHz x8

GPU Driver 565.57.01

CUDA Driver API 12.7

CUDA 12.0

NVIDIA HPC SDK 23.1

OpenACC 2.7

Compiler Flags -O3 –std=c++0x –fopenmp –acc –Minfo=accel -MinlineEvaluation Machine

Compilation Environment

➢ Supports parallel processing
in OpenMP and CUDA

➢ Does not support process
parallel processing via MPI

➢ Neighborhood particle search
processing time accounts
for the majority of execution
time (pink portion)

Evaluation Environment

➢ Measure processing time and evaluate speed up of four optimizations over
the baseline

➢ Two different cases are used to assess the generality

V01 7946.77 1.00 16789.40 1.00

V02 1096.15 7.25 2051.15 8.19

V03 953.09 8.34 1872.79 8.96

V04 903.85 8.79 1883.14 8.92

V05 846.70 9.39 1968.31 8.53

Name

01_Dambreak 11_Floating

Time[s] Speedup Ratio Time[s] Speedup Ratio

Kernel computation time per time step for each optimization

Total computation time and speedup ratio

	スライド 1

