
2007

AI agent for mitigating
storage system overuse

S. Willemot1, L. Mustiere1, S. Gougeaud1

Why HPC systems need AI?

1 CEA, Bruyères-le-Châtel, France

Fig 1. Order of magnitude of data generated by HPC cluster usage 

This data is just a subset of what is actually captured. Other information,
such as disk usage for storage, and security alerts, is also monitored and
generates data.

How to help Lustre?
AI can help monitoring and managing HPC clusters which:
■ increase in size
■ diversify in terms of technology
■ operate ever-longer and ever-bigger simulation codes

Experimentation is done in a simulated environment where:

■ jobs consist of a set of I/O accesses converted into Lustre changelogs

■ changelogs are read and processed in real time

■ 3 different scenarii are considered: bad job, bad user, and shared overusage

 Fine-tuning: improved efficiency and the ability to manage more various

scenarii

 API improvement: support for additional metrics, such as disk usage

 Kraken project: the changelog agent is the first agent of Kraken, which aims

to manage the entire supercomputer

Is it efficient enough?

This work involves processing Lustre changelogs when the system is overused.

■ Lustre is a distributed, parallel file system used in HPC storage systems that
provides good performance and reliability.

■ Each user action on the file system generates an event. These events are
stored and monitored.

■ If a certain number of events are observed, an alert is triggered. We need
to know whether this is due to misuse or a combination of circumstances.

Fig 2. Lustre changelogs analysis by administrators

Currently, an alert is only processed by an operator, who needs to retrieve
all available data. Then, they seek the root cause of the alert and estimate
the necessary action to resolve it.

Based upon agentic AI, Kraken is designed to answer queries from alerts or operators by 
applying the most suitable set of actions depending on the supercomputer state.

Fig 4. Screen capture of Kraken agent solving an issue

The agent interacts both with the incoming alert (treated as a user request) 
and with the tools it invokes.

The inference time of the agent is nearly 45 seconds with 2 NVIDIA A100 GPUs

using the Devstral Small model from Mistral AI.

The LLM used to build the Kraken agent is Devstral Small from Mistral AI, an agentic LLM designed for software
engineering tasks. Specialization is achieved using an in-context few-shot learning approach with tool-use
demonstrations, structured as five problem-solutions pairs.

Fig 3. Kraken agent workflow

This workflow represents a typical treatment of an alert received from probes.
Each external interaction corresponds to a query sent through the tool-calling mechanism.

Kraken workflow
Tool-calling to extract informations from the 
changelogs database:
■ get_last_alerts(seconds)

■ get_jobs_count_by_type(event_type)

■ get_users_by_jobs(jobs_id)

 enables informed reasoning to trace the 
alert’s origin

Returns control and pauses until administrator 
approval is received before performing any 
system action.

Tool-calling to realise actions on the system:
■ ban_jobs_by_id(jobs_id)

■ send_mail_to_user(user_id)

 carries out validated actions on the system

The report includes:
■ a breakdown of the 

reasoning steps leading to 
the agent’s conclusion

■ a description of all actions 
performed

Sent through tool-calling
■ send_admin_report(report)


