storage systemoveruse

Al agent for mitigating

Based upon agentic Al, Kraken is designed to answer queries from alerts or operators by

applying the most suitable set of actions depending on the supercomputer state.

/ Why HPC systems need AI?\

Al can help monitoring and managing HPC clusters which:
m incredse in size

m diversify in terms of technology

m operate ever-longer and ever-bigger simulation codes

Cc:mpute. Se.e:ur‘-ttf

SL‘{EtEm Jc}gs Securittf [595
15'000 events/s 600 events/day

Network Facilities

Network probes

Facilities probes
1000 data/s

Stc:mge. 100 data/min

LusTre Clﬂﬂhﬂgﬂ[ﬂ S
30'000 euents/qs

I Fig 1. Order of magnitude of data generated by HPC cluster usage

This data is just a subset of what is actually captured. Other information,
such as disk usage for storage, and security alerts, is dlso monitored and
generates data.

@work involves processing Lustre changelogs when the system is overusey

How to help Lustre?

m Lustre is a distributed, parallel file system used in HPC storage systems that
provides good performance and reliability.

m Each user action on the file system generates an event. These events are
stored and monitored.

m If a certain number of events are observed, an alert is triggered. We need
to know whether this is due to misuse or a combination of circumstances.

admin

clf\o.nge.logs <

cl«ange[ogs
_ y, anall./sis
writing)[Eld
) filesystem
Filesyste.m status check
_ J

I Fig 2. Lustre changelogs analysis by administrators

Currently, an alert is only processed by an operator, who needs to retrieve
all available data. Then, they seek the root cause of the alert and estimate
the necessary action to resolve it.

Kraken workflow

demonstrations, structured as five problem-solutions pairs.

The report includes: é
m 0 breakdown of the
reasoning steps leading to an alert 1

the agent’s conclusion s received

The LLM used to build the Kraken agent is Devstral Small from Mistral Al, an agentic LLM designed for software
engineering tasks. Specialization is achieved using an in-context few-shot learning approach with tool-use

m a description of all actions
performed

\ B"'Eaéfs kraken

a detailed rapc:r‘t
is written and sent to the

admin team

Sent through tool-calling
m send admin_report(report)

I Fig 3. Kraken agent workflow

}ék:s

Tool-calling to extract informations from the
changelogs database:

m get last alerts(seconds)

m get jobs count by type(event type)

///// m get users by jobs(jobs id)
» enables informed reasoning to trace the
alert’s origin

gatl-.e.r ‘
informations @

: Returns control and pauses until administrator
verification S~ T approvalis received before performing any
system action.

system / Tool-calling to realise actions on the system:
actions £ \\\\\‘ m ban_jobs by id(jobs_id)

m send mail to user(user _id)

» carries out validated actions on the system

This workflow represents a typical treatment of an alert received from probes.
Each external interaction corresponds to a query sent through the tool-calling mechanism.

Experimentation is done in a simulated environment where:
= jobs consist of a set of I/O accesses converted into Lustre changelogs
m changelogs are read and processed in real time

m 3 different scenarii are considered: bad job, bad user, and shared overusage

The inference time of the agent is nearly 45 seconds with 2 NVIDIA A100 GPUs

using the Devstral Small model from Mistral Al.

» Fine-tuning: improved efficiency and the ability to manage more various
scenarii

> APlimprovement: support for additional metrics, such as disk usage

> Kraken project: the changelog agent is the first agent of Kraken, which aims

to manage the entire supercomputer

I Fig 4. Screen capture of Kraken agent solving an issue

The agent interacts both with the incoming alert (treated as a user request)
and with the tools it invokes.

S. Willemot!, L. Mustiere’, S. Gougeaud!

1 CEA, Bruyeres-le-Chdatel, France

