GLASs: A GPU-ACCELERATED LINEAR ALGE- Barcelona
S .
BRA FRAMEWORK FOR EXASCALE PROBLEMS IN upercomputing

Centro Nacional de Supercomputacion

PHYSICS AND ENGINEERING

L. rino?, A. Quintanas?®, C. McDonnellP. F. Spiga®, O. Lehmkuh!® P~
Gasparino®, A. Quintanas<, C. McDonnell®, F. Spiga®, O. Le u < NVIDIA
aBSC-CNS (CASE), PUPM, °NVIDIA Corp.
Motivation
o I$acc “vector” on GLL points
» Enabling high-order methods for indus- - threadidx.x threadidx.x
. . . 0111213|4|5]|6|7 3 6
trial simulations and research 12l || l[2[sieflelzloli2slslslef
» Reducing time-to-solution for large- IR N
scale numerical solutions VA $acc "gang” on elem:
® - . ») .
*Improve on existing solution frame- \
s ne e ° o & e (ridDim = nel
works (PETSc, Trilinos...) o blockDim = 1
12@ 220 ®25 @138 L 1]
Challenges 23 24 17
* Ensure a flexible, portable design N
ign 1 bit
o Easy C|Ient-frameWOrk |ntegrat|0n Exponent 8 bits Frecision 23 bits
» Achieve high performance on modern -2 INNEENEEE
GPU_based SYStemS Exponent 8 bits Precision 7 bits
. . ricatic [IIHEHEEEE
» Support for accurate mixed-precision
Exponent 5 bits Frecision 10 bits

operations, including bfloats e p—

GLASs Framework

* Modular C++ framework for building GPU-accelerated iterative linear algebra solutions (linear system solvers and eigensolvers)

* GPU kernels implemented in detached module, allowing for easy switch between CUDA, HIP or future backends at compile time

* Routine-driven design: client codes provide operations to methods, not data. Flexible design with minimal assumptions on data layout

» Templated design for easy mixed-precision support, including for experimental NVIDIA bfloat16 formats

* Full parallel execution over multiple GPUs: internal collectives rely on either GPU-aware MPI or vendor-specific CCL libraries (NCCL, RCCL)

Client Application
- N IterSolvers Interface Layer
Client Code . .
- constructs C++ lambda functions: Setup(XO,rhS) before solve IterSolvers
auto matvec = [=](x in, x out) { » --
// matrix-vector product Public API
Operator(user args, X in, x _out); plan(size,maxIters,tol) — called once in constructor
// Comms getSolution(x_out) setup(x0,rhs) — called before each solve
halo comms(user args, x in, x_out); A getSolution(x out) — retrieve solution)

};

-V

auto precond = [=](x in, x out) {

] T new GMRES() (constructor — plan) 113 ,,/’//
// optional preconditioner P Solver Families
Preconditioner(user args, x in, x out); GMRES Solver
/| Comms - gmresSolve(matvec,precond) (inherits IterSolvers)
- gmresSolve(matvec,precond)
allreduce wrapper

halo comms(user args, x in, x_out);
dot, axpy, norm

! new CG() (constructor — plan)
* halo comms(user args, x in, x out) — mandatory parallel halo ops \(Conjugate Gradient Family)
- instantiates solver family (constructor — plan) (CG / FPCG / BiCGStab)

_ Internal Utility Libraries
- calls setup() then solve() cg/fpcg/bicgstab Solve(matvec,precond) (inherits IterSolvers) allreduce wrapper (.
> g | -cgSolve(matvec,precond) X Comm _Utils]
- fpcgSolve(matvec,precond) L(MPI for both backends; NCCL for GPU)
|- bicgstabSolve(matvec,precond) | dot, axpy, norm s s s
Backend Layer

CUDA Utils]
)

GPU Backend uses [(GPU kernels & helpers
- uses CUDA Utils
- uses Comm Utils (MPI/NCCL)
[TensorUtils J
uses ()
CPU Backend
- uses TensorUtils
- uses Comm Utils

dot, axpy, norm

el
[=]

dot, axpy, norm

CPU BLAS-like utilities 1

GLASs Repo
FPCG test Scalability results
« Simple tridiagonal, symmetric system
GLASSs Flexible PCG strong scaling FPCG Weak Scaling (MPI)

 Basic capability showcase

» Uses FP32 version of solver (mixed- éﬂgb_k\qh 1

precision) o om S= —

+ Tested on MN5 ACC nodes TEIRE o r o
» Preconditioner: Laplacian diagonal in- - 1

verse

«Similar to a 1D FEM test, including e . . D T S

halo communications with MPI

