
GLASS: A GPU-ACCELERATED LINEAR ALGE-
BRA FRAMEWORK FOR EXASCALE PROBLEMS IN

PHYSICS AND ENGINEERING

L. Gasparinoa, A. Quintanasa, C. McDonnellb, F. Spigac, O. Lehmkuhla

aBSC-CNS (CASE), bUPM, cNVIDIA Corp.

GLASS: A GPU-ACCELERATED LINEAR ALGE-
BRA FRAMEWORK FOR EXASCALE PROBLEMS IN

PHYSICS AND ENGINEERING

L. Gasparinoa, A. Quintanasa, C. McDonnellb, F. Spigac, O. Lehmkuhla

aBSC-CNS (CASE), bUPM, cNVIDIA Corp.

Motivation

• Enabling high-order methods for indus-
trial simulations and research

• Reducing time-to-solution for large-
scale numerical solutions

• Improve on existing solution frame-
works (PETSc, Trilinos...)

Challenges

• Ensure a flexible, portable design

• Easy client-framework integration

• Achieve high performance on modern
GPU-based systems

• Support for accurate mixed-precision
operations, including bfloats

GLASs Framework

• Modular C++ framework for building GPU-accelerated iterative linear algebra solutions (linear system solvers and eigensolvers)

• GPU kernels implemented in detached module, allowing for easy switch between CUDA, HIP or future backends at compile time

• Routine-driven design: client codes provide operations to methods, not data. Flexible design with minimal assumptions on data layout

• Templated design for easy mixed-precision support, including for experimental NVIDIA bfloat16 formats

• Full parallel execution over multiple GPUs: internal collectives rely on either GPU-aware MPI or vendor-specific CCL libraries (NCCL, RCCL)

Client Application
IterSolvers Interface Layer

Solver Families

Internal Utility Libraries

Backend Layer

Client Code

- constructs C++ lambda functions:

 auto matvec = [=](x_in, x_out) {
 // matrix-vector product

 Operator(user_args, x_in, x_out);
 // Comms

 halo_comms(user_args, x_in, x_out);
 };

 auto precond = [=](x_in, x_out) {
 // optional preconditioner

 Preconditioner(user_args, x_in, x_out);
 // Comms

 halo_comms(user_args, x_in, x_out);
 };

 * halo_comms(user_args, x_in, x_out) — mandatory parallel halo ops
- instantiates solver family (constructor → plan)
- calls setup() then solve()

IterSolvers

--

Public API

plan(size,maxIters,tol) — called once in constructor

setup(x0,rhs) — called before each solve

getSolution(x_out) — retrieve solution

setup(x0,rhs) before solve

GMRES Solver
(inherits IterSolvers)

- gmresSolve(matvec,precond)

new GMRES() (constructor → plan)

gmresSolve(matvec,precond)

Conjugate Gradient Family
(CG / FPCG / BiCGStab)

(inherits IterSolvers)
- cgSolve(matvec,precond)

- fpcgSolve(matvec,precond)
- bicgstabSolve(matvec,precond)

new CG() (constructor → plan)

cg/fpcg/bicgstab Solve(matvec,precond)

getSolution(x_out)

Comm_Utils
(MPI for both backends; NCCL for GPU)

allreduce wrapper

CPU Backend
- uses TensorUtils
- uses Comm_Utils

dot, axpy, norm

GPU Backend
- uses CUDA_Utils

- uses Comm_Utils (MPI/NCCL)

dot, axpy, norm

allreduce wrapper

dot, axpy, norm

dot, axpy, norm

TensorUtils
(CPU BLAS-like utilities)

CUDA_Utils
(GPU kernels & helpers)

uses

uses

FPCG test

• Simple tridiagonal, symmetric system

• Basic capability showcase

• Uses FP32 version of solver (mixed-
precision)

• Tested on MN5 ACC nodes

• Preconditioner: Laplacian diagonal in-
verse

• Similar to a 1D FEM test, including
halo communications with MPI

Scalability results

