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GLASs Framework

* Modular C++ framework for building GPU-accelerated iterative linear algebra solutions (linear system solvers and eigensolvers)

* GPU kernels implemented in detached module, allowing for easy switch between CUDA, HIP or future backends at compile time

* Routine-driven design: client codes provide operations to methods, not data. Flexible design with minimal assumptions on data layout

» Templated design for easy mixed-precision support, including for experimental NVIDIA bfloat16 formats

* Full parallel execution over multiple GPUs: internal collectives rely on either GPU-aware MPI or vendor-specific CCL libraries (NCCL, RCCL)

Client Application
- N IterSolvers Interface Layer
Client Code . .
- constructs C++ lambda functions: Setup(XO,rhS) before solve IterSolvers
auto matvec = [=](x in, x out) {  » ----------------------------------------------
// matrix-vector product Public API
Operator(user args, X in, x _out); plan(size,maxIters,tol) — called once in constructor
// Comms getSolution(x_out) setup(x0,rhs) — called before each solve
halo comms(user args, x in, x_out); A getSolution(x out) — retrieve solution )

};

-V

auto precond = [=](x in, x out) {

] T new GMRES() (constructor — plan) 113 ,,/’//
// optional preconditioner P Solver Families
Preconditioner(user args, x in, x out); GMRES Solver
/| Comms - gmresSolve(matvec,precond) (inherits IterSolvers)
- gmresSolve(matvec,precond)
allreduce wrapper

halo comms(user args, x in, x_out);
dot, axpy, norm

! new CG() (constructor — plan)
* halo comms(user args, x in, x out) — mandatory parallel halo ops \( Conjugate Gradient Family )
- instantiates solver family (constructor — plan) (CG / FPCG / BiCGStab)

_ Internal Utility Libraries
- calls setup() then solve() cg/fpcg/bicgstab Solve(matvec,precond) (inherits IterSolvers) allreduce wrapper ( .
> g | -cgSolve(matvec,precond) X Comm _Utils ]
- fpcgSolve(matvec,precond) L(MPI for both backends; NCCL for GPU)
|- bicgstabSolve(matvec,precond) | dot, axpy, norm s s s
Backend Layer
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GPU Backend uses [(GPU kernels & helpers
- uses CUDA Utils
- uses Comm Utils (MPI/NCCL)
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CPU Backend
- uses TensorUtils
- uses Comm Utils
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CPU BLAS-like utilities 1

GLASs Repo
FPCG test Scalability results
« Simple tridiagonal, symmetric system
GLASSs Flexible PCG strong scaling FPCG Weak Scaling (MPI)

 Basic capability showcase
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