The Progress of OpenACC for MN-Core and
MNCL Development: Compiler and Runtime

Ryuta Tsunashima'"), Naohito Nakasato!?), Ryozaburo Suzuki®®), Katsuhiro Endo(¥

, Hiroto Imachi®®), Junichiro Makino®:1)

HEXF

KOBE UNIVERSITY

\ /JNIVERSITY
A N

Center for
Planetary Science

ACKNOWLEDGEMENT

This work was partially supported by MEXT as
"Feasibility studies for the next-generation computing infrastructure".

(1) Kobe University, (2) The University of Aizu, (3) Sinby Corporation, (4) National Institute of Advanced Industrial Science and Technology, (5) Preferred Networks, Inc.

MN-Core

 An Al and HPC accelerator by Kobe University and Preferred Networks (PFN)
« The arithmetic unit supports double precision (difference from other Al accelerators)

* High power efficiency (= High FLOPS per watt) than same generation GPUs and CPUs
« Ranked #1 three times in the Green500 in 2020~2021

 SIMD (Single Instruction, Multiple Data) Architecture
8192 Processing Elements (PEs) run parallelly and synchronously without threads

* Simpler behavior than GPUs, but Increased number of PEs per chip area
* Difference with other processors: memory model
* MN-Core: Distributed memory type | GPUs, CPUs:Shared memory type
* Each PE has its own local memory (SRAM), No cache memory => No coherency

MN-Core Package
has Chip x 4

Chip

Inside a Chip
MAB L1B

N

))))) -t - "D
o Data Engine Die to Die Interconnect

f g N :

> || = A ERE=

-
> || > >
™| > &
<=
>
@

gYWN
“PVWI]V

»»»»
o0 o ‘: fe =) o

L2B

Internal Structure of the Chip

« Tree hierarchical structure in a MN-Core chip
« Each layer has the communication buffer memory
- L2B (Level 2 Broadcast Block) x 4 (on 1 chip)

« L2B Memory: 72KB
« L1B (Level 2 Broadcast Block) x 8 (on 1 L2B)

« L1B Memory: 72KB

-  MAB (Matrix Arithmetic Block) x 16 (on 1 L1B)
« PE (Processing Element, general purpose) x 4
« Local memory: 72KB (on 1 PE)
- Total 576MB (on 1 Package)
« Directly accessible to PE
« General Register File: 4.5KB
« Temporary Register: 72B
«  MAU (Matrix Arithmetic Unit) x T (on 1T MAB) .
« Shared by 4 PEs .

PI3UUONA| 310 01 310

Spec

Peak performance
32.8TFLOPS (double)

Power consumption :
500W (Predicted)

Clock frequency : 500MHz

DRAM (off chip)

Bandwidth : T00GB/s
Size : 32GB

General Purpose Language for MN-Core
=

Advantages of OpenACC |

* No need to rewrite all of code for porting
—Reducing code volume than CUDA and OpenCL

* Just add directives to run accelerators

e Existing languages for MN-Core: DSL or for Al

* Developing two general purpose languages
(APIs) for HPC

* MNCL (CUDA & OpenCL equivalent)

* has C version and Fortran version

—Compiling code with directives as hints
* High productivity

OpenACC/MN-Core Interface

Loop level explanation « worker: undefined (no suitable layer)

« gang: PEs parallel * Notusingitis the same as the GPU convention

e vector: vector instruction parallel * Ignored even if specified

#pragma acc enter data copyin(a[N]J[N],b[N]J[N],c[N]) ¥
L2(a,b[4][4];c[16]) L1(a,b[4][2];c[8]) ¥
mab(a,b[2][8];c[16]) pe(a,b[4][1];c[4])

I$acc enter data copyin(a(1:N, 1:N),b(1:N, 1:N),c(1:N)) &
I$acc& L2(a,b(4, 4);c(16)) L1(a,b(4, 2);c(8)) &
I$acc& mab(a,b(2, 8);c(16)) pe(a,b(4, 1);c(4))

A ex) Specifying data division in C A ex) Specifying data division in Fortran

£ 4 A Specifying number of data divisions
» » - ® on each layer in the chip
array[32][32](32] 1‘ 1‘

<] Like through grid pattern filters
2D partitioning array[8][8]1[32]

* This can be omitted by default
with the 4x4 filter per one

corresponds to °
L2(array[4][4])

e Red code is a MN-Core extension

Default: Near-minimum halo communication cost

A Division image if L2(array[4][4]) is described divisions for square and cube

o OpenACC (extended for MN-Core) \ —Applying directives in any part of the code /

OpenACC for MN-Core

* Support languages: * Unique extensions for distributed memory model
C, Fortran (except C++ now) * Data partitioning at each layer in MN-Core
* Based on OpenACC 1.0 * Collective communications between
* APIs for separate compilation host & PEs, PEs & PEs
(part of OpenACC 2.0 and later) * Especially halo (shadow) exchange

e Supporting language standard precision (currently, half-precision is not expected)

e Total number of division with all layers:
« 2D:[128][64], 3D: [16][16][32]

#pragma acc parallel create(temp[0:128][0:128][0:128]) ¥
copy(a[0:128][0:128][0:128]) shadow(a[1][1][1])
for(count=0; count<N; count++) {
#pragma acc loop gang vector collapse(3)
for(int i=1; 1<128-1; i++){
for(int j=1; j<128-1; j++){

4 Example of 7-point stencil code in C

for(int k=1; k<128-1; k++){

e 1] e Just add directives (bold) to sequential code for CPU
+a[1][3-1][k]+a[1][+1][k] . i _ i iVisi i
U1k 115 1Tk ]) Red code is a MN-Core extension (divisions are omitted)
' rezralilalkd; « shadow clause: Specifying halo size of each dimension
#pragma acc loop gang vector collapse(3) . . er . . .
For(int i=1; i<128-1; i++){  reflect directive: Specifying halo exchange timing
for(int j=1; j<128-1; j++){ o ] .
for(int k=1; k<128-1; k++){ * Feasibility: In XcalableMP that is an API for multi-node
i1[§1[Kk] = t i10310k]; : : C
oy It = remp LI parallel, there are implementation of halo communication

#pragma acc reflect(a)

compilation with like above interfaces

OpenACC/MN-Core Compiler

* The OpenACC to MNCL source-to-source compiler

e Compiling MNCL to assembly with MNCL compiler
* Currently, developing the prototype compiler for C lang.

Compiling flow

(@ ) (@ )

. OpenACC MNCL

Compiler Assembler

OpenACC MNCL

Binary

Compiler

Advantages of Source-to-Source ]

* Reducing implementation cost

—Commonize the process after compiling MNCL with the MNCL compiler

* Enabling sophisticated performance tuning with MNCL in OpenACC
—Allows partial MNCL function calls from OpenACC
* This is included in the OpenACC specification (CUDA kernels can be called by OpenACC for GPU) /

\_

OpenACC/MN-Core C Compiler MNCL
(@ ) |
Device
Xcode code
OpenACC @ ML*3 Tran*s4lator
G g 4 Host
*1 C preprocessor (by GCC, etc.) code
* P by XcodeML-Tool
*3 Istr:fnttéd?latecoReirese:fa:i)on (XML format) 7
Implementation *4 Original Middle-End

* Intermediate Representation (IR): Used for code analysis in compilers

 XcodeML:An XML format IR has fully compatible C and Fortran (reversible)
e XcodeML can be included OpenACC information

 The translator analyzes and translates XcodeML for “OpenACC to MNCL”

Current Status

MNCL C Prototype (under development too)
 Improved MNCL host runtime overhead

__kernel void main_kernel@(
__global double* _arg arrayl,

Running on MN-Core
__global double* _arg array2,

ex) OpenACC to MNCL device code “alobal double* _arg array3

OpenACC C lang. Prototype

 Embarrassingly parallel computing with multi-D
arrays can be compiled to current MNCL
e 1D-3D stencil calculation code with default divisions .
can be compiled to current MNCL too
 We confirmed to compile Himeno benchmark
(Wfigure) to MNCL device code with proper
division, memory allocation and communication

 Continued developing the MNCL C ver. compiler to

 The existing host runtime has overhead, taking
about several hundred us for sending 8192
double variables to all PEs per one way in total

Because it is optimized for Al

* By calling a more primitive library, we confirmed
a significant overhead reduction ) .

 We will develop its wrapper library for users

compilation ) {

__private double arrayl[1];
(1D vector add code) bm2 double arrayl bm2[1 * 512];
#include <stdio.h>

bml double arrayl bml[1l * 64];
__private double array2[1];
#define N 8192 bm2 double array2_bm2[1 * 512];
bml double array2_bml[1l * 64];
__private double array3[1];
bm2 double array3 bm2[1 * 512];
bml double array3_bml[1l * 64];

int main() {
double arrayl[N], array2[N], array3[N];
for(int j=0; j<N; j++) { -
arrayl[j] = 0.eof;
array2[j] = 1.ef;
array3[j] = 1.e0f;

distribute(arrayl_bml, arrayl_bm2, _arg_arrayl, 1);
distribute_pe(arrayl, arrayl_bml, 1);
distribute(array2_bml, array2_bm2, _arg_array2, 1);
distribute_pe(array2, array2_bml, 1);
distribute(array3_bml, array3_bm2, _arg_array3, 1);
distribute_pe(array3, array3_bml, 1);

#pragma acc enter data copyin(arrayl[:N], ¥
array2[:N], array3[:N])

#pragma acc parallel loop gang present( ¥ arrayl[@] = array2[@] + array3[@];

Himeno benchmark code with OpenACC/MN-Core

support stencil calculations with 1D to 3D arrays

arrayl[:N], array2[:N], array3[:N])
for(int i=0; i<N; i++) { collect_pe(arrayl_bml, arrayl, 1);

float jacobi(int nn) {
float gosa,so,ss; °

#pragma acc enter data copyin(p[:MIMAX][:MIMAX][ :MKMAX], wrkl[:MIMAX][ :MIMAX][:MKMAX], ¥
wrk2[ :MIMAX][ :MIMAX][ :MKMAX], bnd[:MIMAX][ :MIMAX][:MKMAX]) shadow(p[1][1][1])

#pragma acc parallel present(p[:MIMAX][:MIMAX][ :MKMAX], wrkl[:MIMAX][:MIMAX][:MKMAX], ¥ L

The OpenACC/MN compiler supported it

Distributed memory model in MN-Core can be

arrayl[i] = array2[i] + array3[i]; collect(_arg_arrayl, arrayl_bm2, arrayl_bmi, 1);
} collect_pe(array2_bml, array2, 1);

' collect(_arg_array2, array2_bm2, array2_bml, 1);
#pragma acc exit data copyout(arrayl[:N], ¥ collect_pe(array3_bml, array3, 1);

array2[:N], array3[:N]) collect(_arg_array3, array3_bm2, array3_bmi, 1);

wrk2[ :MIMAX][ :MIMAX][ :MKMAX], bnd[:MIMAX][ :MIMAX][:MKMAX]) shadow(p[1][1][1])
{ int 1,3,k,n;

described like figures (bold font) V¥ P

} }

for(n=0 ; n<nn ;
gosa = 0.0;
#pragma acc loop gang collapse(3) reduction(+:gosa)
for(i=1 ; i<IMAX-1 ; ++1i)
for(j=1 ; j<IMAX-1 ; ++j)
for(k=1 ; k<IMAX-1 ; ++k){

++n){

- _ global memory represents PCle buffer
memory (PDM) in MN-Core (currently)

sO = aPl1l2 * p[i+1][j][k] + @012 * p[i][j+1][k] + @012 * p[i][j][k+1]
+ b * ( pli+1][J+1][k] - p[i+1][]-1][k] - p[i-1][J+1][k] + p[i-1][3-1][k] )
+ b * ( p[i][3+1][k+1] - p[i][J-1][k+1] - p[i][J+1][k-1] + p[i][]-1][k-1] )
+ b * ( p[i+1][J][k+1] - p[i-1][J][k+1] - p[i+1][J][k-1] + p[i-1][j][k-1] )

int a_size[3] = {10, 10, 6};
int a_shadow[3][2] = {{1, 1}, {1, 1}, {1, 1}};

halo_comm(a, sizeof(double), 3, a_size, a_shadow);

+ ¢ * p[i-1][J1[k] + ¢ * p[i][J-1][k] + < * p[i][J][k-1] + wrk1[i][J][k];
ss = ( s@ * a3 - p[i][j]1[k] ) * bnd[1][J][K];
gosa += ss*ss;
wrk2[1][JI[k] = p[i][J]1[k] + omega * ss; }
#pragma acc loop gang collapse(3)
for(i=1 ; i<IMAX-1 ; ++1i)
for(j=1 ; j<IMAX-1 ; ++j)
for(k=1 ;
p[i1[J1[k] = wrk2[i][J]1[k]; °
#pragma acc reflect (p)
} /* end n loop */ }

Ongoing Plans

k<IMAX-1 ; ++k)

 We will release OpenACC prototype environment on
WWW in fiscal year 2025 (before next March)

Users will be able to touch an early version of the
MNCL compiler and the OpenACC/MN compiler

1D embarrassingly parallel computing can be executed

 OpenACC 1D vecadd code (Afigure) has already been
confirmed to be running on the actual MN-Core

We compiled OpenACC = MNCL device code = binary

Evaluation

 We confirmed to be able to compile OpenACC via MNCL to
theoretical peak performance assemblies (just calculation part)
(no nop, minimum num. of inst. lines, except vector inst.)

 Compiled 7-point stencil code (like an example above) by
the 3D supported simple implementation MNCL compiler

<] Halo communication code .
excerpted from
the OpenACC to MNCL
Himeno benchmark code
compilation result



