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The Progress of OpenACC for MN-Core and 
MNCL Development: Compiler and Runtime

MN-Core
Board

• Existing languages for MN-Core: DSL or for AI
• Developing two general purpose languages

(APIs) for HPC
• MNCL (CUDA & OpenCL equivalent)

• has C version and Fortran version

• OpenACC (extended for MN-Core)

• No need to rewrite all of code for porting
–Reducing code volume than CUDA and OpenCL

• Just add directives to run accelerators
–Compiling code with directives as hints

• High productivity
–Applying directives in any part of the code

Advantages of OpenACC

• Support languages: 
C, Fortran (except C++ now)

• Based on OpenACC 1.0
• APIs for separate compilation

(part of OpenACC 2.0 and later)
• Supporting language standard precision (currently, half-precision is not expected) 

• The OpenACC to MNCL source-to-source compiler
• Compiling MNCL to assembly with MNCL compiler

• Currently, developing the prototype compiler for C lang.

Compiling flow
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• Reducing implementation cost

–Commonize the process after compiling MNCL with the MNCL compiler

• Enabling sophisticated performance tuning with MNCL in OpenACC

–Allows partial MNCL function calls from OpenACC

• This is included in the OpenACC specification (CUDA kernels can be called by OpenACC for GPU)

Advantages of Source-to-Source

◀ Example of 7-point stencil code in C
• Just add directives (bold) to sequential code for CPU

• Red code is a MN-Core extension (divisions are omitted)
• shadow clause: Specifying halo size of each dimension
• reflect directive: Specifying halo exchange timing
• Feasibility: In XcalableMP that is an API for multi-node 

parallel, there are implementation of halo communication 
compilation with like above interfaces

#pragma acc parallel create(temp[0:128][0:128][0:128]) ¥
copy(a[0:128][0:128][0:128]) shadow(a[1][1][1])

for(count=0; count<N; count++) {
#pragma acc loop gang vector collapse(3)

for(int i=1; i<128-1; i++){
for(int j=1; j<128-1; j++){

for(int k=1; k<128-1; k++){
temp[i][j][k] =

c1*(a[i-1][j][k]+a[i+1][j][k]
+a[i][j-1][k]+a[i][j+1][k]
+a[i][j][k-1]+a[i][j][k+1])
+c2*a[i][j][k];

} } }
#pragma acc loop gang vector collapse(3)

for(int i=1; i<128-1; i++){
for(int j=1; j<128-1; j++){

for(int k=1; k<128-1; k++){
a[i][j][k] = temp[i][j][k];

} } }
#pragma acc reflect(a)
}

Internal Structure of the Chip
• Tree hierarchical structure in a MN-Core chip
• Each layer has the communication buffer memory
• L2B (Level 2 Broadcast Block) x 4（on 1 chip）

• L2B Memory: 72KB
• L1B (Level 2 Broadcast Block) x 8（on 1 L2B）

• L1B Memory: 72KB
• MAB (Matrix Arithmetic Block) x 16（on 1 L1B）

• PE (Processing Element, general purpose) x 4
• Local memory: 72KB（on 1 PE）

• Total 576MB（on 1 Package）
• Directly accessible to PE

• General Register File: 4.5KB
• Temporary Register: 72B

• MAU (Matrix Arithmetic Unit) x 1（on 1 MAB）
• Shared by 4 PEs

Loop level explanation
• gang: PEs parallel
• vector: vector instruction parallel

#include <stdio.h>
#define N 8192

int main() {
double array1[N], array2[N], array3[N];
for(int j=0; j<N; j++) {

array1[j] = 0.0f;
array2[j] = 1.0f;
array3[j] = 1.0f;

}

#pragma acc enter data copyin(array1[:N], ¥
array2[:N], array3[:N])

#pragma acc parallel loop gang present( ¥
array1[:N], array2[:N], array3[:N])
for(int i=0; i<N; i++) {

array1[i] = array2[i] + array3[i];
}

#pragma acc exit data copyout(array1[:N], ¥
array2[:N], array3[:N])

}

__kernel void main_kernel0(
__global double* _arg_array1,
__global double* _arg_array2,
__global double* _arg_array3
) {
__private double array1[1];
bm2 double array1_bm2[1 * 512];
bm1 double array1_bm1[1 * 64];
__private double array2[1];
bm2 double array2_bm2[1 * 512];
bm1 double array2_bm1[1 * 64];
__private double array3[1];
bm2 double array3_bm2[1 * 512];
bm1 double array3_bm1[1 * 64];

distribute(array1_bm1, array1_bm2, _arg_array1, 1);
distribute_pe(array1, array1_bm1, 1);
distribute(array2_bm1, array2_bm2, _arg_array2, 1);
distribute_pe(array2, array2_bm1, 1);
distribute(array3_bm1, array3_bm2, _arg_array3, 1);
distribute_pe(array3, array3_bm1, 1);

array1[0] = array2[0] + array3[0];

collect_pe(array1_bm1, array1, 1);
collect(_arg_array1, array1_bm2, array1_bm1, 1);
collect_pe(array2_bm1, array2, 1);
collect(_arg_array2, array2_bm2, array2_bm1, 1);
collect_pe(array3_bm1, array3, 1);
collect(_arg_array3, array3_bm2, array3_bm1, 1);
}

Running on MN-Core
ex) OpenACC to MNCL device code 

compilation
(1D vector add code)

#pragma acc enter data copyin(a[N][N],b[N][N],c[N]) ¥
L2(a,b[4][4];c[16]) L1(a,b[4][2];c[8]) ¥
mab(a,b[2][8];c[16]) pe(a,b[4][1];c[4])

▲ ex) Specifying data division in C

▲ Division image if L2(array[4][4]) is described 

◀ ▲ Specifying number of data divisions 
on each layer in the chip

◁ Like through grid pattern filters
• Red code is a MN-Core extension
• This can be omitted by default

• Default: Near-minimum halo communication cost 
divisions for square and cube

• Total number of division with all layers:
• 2D: [128][64], 3D: [16][16][32]

• worker: undefined (no suitable layer)
• Not using it is the same as the GPU convention
• Ignored even if specified

MN-Core

General Purpose Language for MN-Core

OpenACC for MN-Core

OpenACC/MN-Core Interface

OpenACC/MN-Core Compiler

Current Status

Inside a Chip

Spec
• Peak performance：

32.8TFLOPS (double)
• Power consumption：

500W（Predicted）
• Clock frequency：500MHz
• DRAM（off chip）
• Bandwidth：100GB/s
• Size：32GB
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OpenACC

• 1D embarrassingly parallel computing can be executed
• OpenACC 1D vecadd code (▲figure) has already been 

confirmed to be running on the actual MN-Core
• We compiled OpenACC ➔ MNCL device code ➔ binary

!$acc enter data copyin(a(1:N, 1:N),b(1:N, 1:N),c(1:N)) &
!$acc& L2(a,b(4, 4);c(16)) L1(a,b(4, 2);c(8)) &
!$acc& mab(a,b(2, 8);c(16)) pe(a,b(4, 1);c(4))

▲ ex) Specifying data division in Fortran

float jacobi(int nn) {
float gosa,s0,ss;

#pragma acc enter data copyin(p[:MIMAX][:MJMAX][:MKMAX], wrk1[:MIMAX][:MJMAX][:MKMAX], ¥
wrk2[:MIMAX][:MJMAX][:MKMAX], bnd[:MIMAX][:MJMAX][:MKMAX]) shadow(p[1][1][1])

#pragma acc parallel present(p[:MIMAX][:MJMAX][:MKMAX], wrk1[:MIMAX][:MJMAX][:MKMAX], ¥
wrk2[:MIMAX][:MJMAX][:MKMAX], bnd[:MIMAX][:MJMAX][:MKMAX]) shadow(p[1][1][1])

{ int i,j,k,n;
for(n=0 ; n<nn ; ++n){

gosa = 0.0;
#pragma acc loop gang collapse(3) reduction(+:gosa)

for(i=1 ; i<IMAX-1 ; ++i)
for(j=1 ; j<JMAX-1 ; ++j)

for(k=1 ; k<JMAX-1 ; ++k){
s0 = a012 * p[i+1][j][k] + a012 * p[i][j+1][k] + a012 * p[i][j][k+1]

+ b * ( p[i+1][j+1][k] - p[i+1][j-1][k] - p[i-1][j+1][k] + p[i-1][j-1][k] )
+ b * ( p[i][j+1][k+1] - p[i][j-1][k+1] - p[i][j+1][k-1] + p[i][j-1][k-1] )
+ b * ( p[i+1][j][k+1] - p[i-1][j][k+1] - p[i+1][j][k-1] + p[i-1][j][k-1] )
+ c * p[i-1][j][k] + c * p[i][j-1][k] + c * p[i][j][k-1] + wrk1[i][j][k];

ss = ( s0 * a3 - p[i][j][k] ) * bnd[i][j][k];
gosa += ss*ss;
wrk2[i][j][k] = p[i][j][k] + omega * ss;        }

#pragma acc loop gang collapse(3)
for(i=1 ; i<IMAX-1 ; ++i)

for(j=1 ; j<JMAX-1 ; ++j)
for(k=1 ; k<JMAX-1 ; ++k)

p[i][j][k] = wrk2[i][j][k];
#pragma acc reflect (p)

} /* end n loop */       }

Himeno benchmark code with OpenACC/MN-Core

Evaluation
• We confirmed to be able to compile OpenACC via MNCL to 

theoretical peak performance assemblies (just calculation part)
(no nop, minimum num. of inst. lines, except vector inst.) 
• Compiled 7-point stencil code (like an example above) by 

the 3D supported simple implementation MNCL compiler

• An AI and HPC accelerator by Kobe University and Preferred Networks (PFN)
• The arithmetic unit supports double precision (difference from other AI accelerators)

• High power efficiency (= High FLOPS per watt) than same generation GPUs and CPUs
• Ranked #1 three times in the Green500 in 2020～2021

• SIMD (Single Instruction, Multiple Data) Architecture
• 8192 Processing Elements (PEs) run parallelly and synchronously without threads
• Simpler behavior than GPUs, but Increased number of PEs per chip area

• Difference with other processors: memory model
• MN-Core: Distributed memory type | GPUs, CPUs：Shared memory type
• Each PE has its own local memory (SRAM), No cache memory ➔ No coherency

MN-Core Package
has Chip x 4

• Unique extensions for distributed memory model
• Data partitioning at each layer in MN-Core
• Collective communications between

host ⇔ PEs, PEs ⇔ PEs
• Especially halo (shadow) exchange

array[32][32][32]
array[8][8][32] 
per one

2D partitioning 
with the 4x4 filter
corresponds to 
L2(array[4][4])

…

Implementation
• Intermediate Representation (IR): Used for code analysis in compilers
• XcodeML：An XML format IR has fully compatible C and Fortran (reversible) 

• XcodeML can be included OpenACC information
• The translator analyzes and translates XcodeML for “OpenACC to MNCL”

Ongoing Plans
• We will release OpenACC prototype environment on 

WWW in fiscal year 2025 (before next March)
• Users will be able to touch an early version of the 

MNCL compiler and the OpenACC/MN compiler

OpenACC C lang. Prototype
• Embarrassingly parallel computing with multi-D 

arrays can be compiled to current MNCL
• 1D-3D stencil calculation code with default divisions 

can be compiled to current MNCL too
• We confirmed to compile Himeno benchmark 

(▼figure) to MNCL device code with proper 
division, memory allocation and communication

int a_size[3] = {10, 10, 6};
int a_shadow[3][2] = {{1, 1}, {1, 1}, {1, 1}};
halo_comm(a, sizeof(double), 3, a_size, a_shadow);

Halo communication code 
excerpted from 
the OpenACC to MNCL 
Himeno benchmark code 
compilation result

MNCL C Prototype (under development too)
• Improved MNCL host runtime overhead

• The existing host runtime has overhead, taking 
about several hundred us for sending 8192 
double variables to all PEs per one way in total
• Because it is optimized for AI

• By calling a more primitive library, we confirmed 
a significant overhead reduction
• We will develop its wrapper library for users

• Continued developing the MNCL C ver. compiler to 
support stencil calculations with 1D to 3D arrays
• The OpenACC/MN compiler supported it

• Distributed memory model in MN-Core can be 
described like figures (bold font) ▼▶
• __global memory represents PCIe buffer 

memory (PDM) in MN-Core (currently)
◁


