A Trial on Optimizing Test Sequences for LAPACK Eigenvalue

Computation Routines using Machine Learning
Hiroto Kashimurat Takahiro Katagiriz Shuji Morisakit Daichi Mukunokif Tetsuya Hoshinoi

Graduate School of Informatics, Nagoya Universityt Information Technology Center, Nagoya University#

Introduction LAPACK & STCollection

Background LAPACK
Software testing is essential for quality T?eef:rr:’e"z;‘i;“ar;“t?:fgztls'ez'ugé:CZre A numerical computing software library that provides routines for
azssltjgance’ but it carries significant execution A ' solving systems of linear equations, least squares problems, eigenvalue
- J .
Objective problems, and singular value problems.
Prioritize executing test cases prone to bugs .
to reduce the time required to detect bugs. STCollection[1]
Proposal \ A test routine that verifies procedures in LAPACK by performing
we proposed a machine learning model to — eigenvalue computations on matrices with known theoretical solutions,
predict the fault-proneness in eigenvalue This is a block of tests that can be || | | cino the QR method, the Divide and Conquer method, the

- ted i dered . : : " '
computation test cases. eXecuted In q reordered sequente Bisection/Inverse Iteration method, and the MRRR method.

Proposed Method

Inject bugs into the LAPACK library

In this study, to simulate bugs in eigenvalue computations using the divide-and-conquer method within numerical computation libraries, we injected
artificial faults into the main routines of LAPACK/BLAS.

/ dgemm : Matrix Multiplication \ / dlaed3 : Eigenvector Merging \ / dlaed4 : Secular Equation Solver \
C=axop(A)«op(B)+pB*C This routine calls dgemm.Injected a bug into diag(D) + pZZ"'

the calculation range of dgemm. T . culat | | + i
dgemm (transa, transb, m-1, n, k, --+) IS routine calculates eigenvalues throug

or iterative computation.
This introduces uniform numerical errors in dgemm (transa, transb, m, n, k-1, -+*) Increasing the tolerance reduces accuracy.

_matrix operations. ARG VRN /

Set close to O
a — 0

. Bug Injection
Train an Al model Routine ¢

1. Injected a bug into LAPACK and compute the eigenvector.

2. Calculate 11 statistical feature representing numerical stability and
differences from analytical solutions from the eigenvectors.

3. Train an Al model to predict bug occurrence rates using 11 statistical features
as input.

(

3 & [@]

. . o
G ~ | S
\ 13[]Ef« E Training Data

Generation

>
/

g | S

Fig 1. Methods for Generating Training Data

11 statistical features : Features extracted from test matrices and computed
eigenvectors, including their deviations from analytical solutions. Example

Unknown Test Sequence

metrics: Frobenius norm and spectral norm. P — enture ———
Test1 Calculation datal
Optimize Test Sequence rest2 - cee
1. For each test case in an unknown test sequence, calculate the eigenvector and o A Model f
statistical features, then perform data preprocessing. nput © Statistical Features
2. Use the preprocessed data to predict the bug occurrence rate. ‘ Output : Bug Occurrence Rate[%] J
3. To improve the APFD score, the test sequence is reordered so that test cases with Optimized Test Sequence
higher predicted fault-proneness are executed first. sequence | Sortinlg Scauence |
APFD : Efficiency score of test sequence indicating how quickly bugs were found[2] Tesa o rewts o
appp - 1 T2+ +Tfm 1 = = s s
T (m * n) ' 2n Fig 2. Methods for Optimizing Test Sequences
Evaluation Result Conclusion

The proposed model achieved a high F1-score and significantly
improved the APFD compared to random test sequences by optimizing
the execution order.

* We injected bugs into the LAPACK routine performing eigenvalue
calculations and computed the eigenvectors.

Metric Result APFD * We extracted 11 features from the eigenvectors and created an Al
Accuracy 0.9335 random 0.9/51 model to predict bug occurrence rates.
Precision 0.9411 optimized 0.9988 | |
 Using the Al model, we predicted the fault-proneness for the test
Recall 0.9658 sequence and performed sorting.
F1 Score 0.9533
Table 1. Performance of the Bug Table 2. APFD of the optimized test . T]t\fe proposed model acf}:lsved high prediction performance, enabling
e eftfective prioritization of bug-prone test cases.
Prediction Model sequence P &P
Acknowledgements References
This work was supported by the Joint Usage/Research Center for Interdisciplinary [1] OSNI, A. M., CHRISTOF, V., JAMES, W. D., BERESFORD, N. P.: A Testing Infrastructure for Symmetric
Large- scale Information Infrastructures (JHPCN) and the High-Performance Tridiagonal Eigensolvers, ACM Transactions on Mathematical Software, Vol.35, No.1, Article 8 (2008) .
Computing Infrastructure (HPCI) under project number jh250015. In addition, this [2] Rothermel, G., Untch, R. H., Chu, C. and Harrold, M. J.: Prioritizing Test Cases For Regression

work was funded by JSPS KAKENHI Grants JP23K11126 and JP24K02945. Testing, IEEE Transactions on Software Engineering, Vol. 27, No. 10, pp. 929-948 (Oct. 2001).

	スライド 1

