
A Trial on Optimizing Test Sequences for LAPACK Eigenvalue
Computation Routines using Machine Learning

Hiroto Kashimura† Takahiro Katagiri‡ Shuji Morisaki† Daichi Mukunoki‡ Tetsuya Hoshino‡

Graduate School of Informatics, Nagoya University† Information Technology Center, Nagoya University‡

Introduction
Background
Software testing is essential for quality
assurance, but it carries significant execution
costs.
Objective
Prioritize executing test cases prone to bugs
to reduce the time required to detect bugs.
Proposal
 we proposed a machine learning model to
predict the fault-proneness in eigenvalue
computation test cases.

LAPACK & STCollection

LAPACK
A numerical computing software library that provides routines for
solving systems of linear equations, least squares problems, eigenvalue
problems, and singular value problems.

STCollection[1]
A test routine that verifies procedures in LAPACK by performing
eigenvalue computations on matrices with known theoretical solutions,
using the QR method, the Divide and Conquer method, the
Bisection/Inverse Iteration method, and the MRRR method.

Proposed Method

1. For each test case in an unknown test sequence, calculate the eigenvector and
statistical features, then perform data preprocessing.

2. Use the preprocessed data to predict the bug occurrence rate.
3. To improve the APFD score, the test sequence is reordered so that test cases with

higher predicted fault-proneness are executed first.

APFD : Efficiency score of test sequence indicating how quickly bugs were found[2]

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝑓1 + 𝑇𝑓2 + ⋯ + 𝑇𝑓𝑚

𝑚 ∗ 𝑛
+

1

2n

Inject bugs into the LAPACK library
In this study, to simulate bugs in eigenvalue computations using the divide-and-conquer method within numerical computation libraries, we injected
artificial faults into the main routines of LAPACK/BLAS.

Train an AI model
1. Injected a bug into LAPACK and compute the eigenvector.
2. Calculate 11 statistical feature representing numerical stability and

differences from analytical solutions from the eigenvectors.
3. Train an AI model to predict bug occurrence rates using 11 statistical features

as input.

11 statistical features : Features extracted from test matrices and computed
eigenvectors, including their deviations from analytical solutions. Example
metrics: Frobenius norm and spectral norm.

Optimize Test Sequence

dgemm : Matrix Multiplication dlaed3 : Eigenvector Merging dlaed4 : Secular Equation Solver

𝐶 = 𝛼 ∗ 𝑜𝑝 𝐴 ∗ 𝑜𝑝 𝐵 + 𝛽 ∗ 𝐶

Set 𝛼 close to 0
𝛼 → 0

This introduces uniform numerical errors in
matrix operations.

This routine calls dgemm.Injected a bug into
the calculation range of dgemm.
dgemm (transa, transb, m-1, n, k, …)

or
dgemm (transa, transb, m, n, k-1, …)

𝑑𝑖𝑎𝑔 𝐷 + 𝜌𝑍𝑍𝑇

This routine calculates eigenvalues through
iterative computation.
Increasing the tolerance reduces accuracy.

Fig 1. Methods for Generating Training Data

Fig 2. Methods for Optimizing Test Sequences

Evaluation Result Conclusion

Metric Result

Accuracy 0.9335

Precision 0.9411

Recall 0.9658

F1 Score 0.9533

APFD

random 0.9751

optimized 0.9988

Table 1. Performance of the Bug
Prediction Model

Table 2. APFD of the optimized test
sequence

• We injected bugs into the LAPACK routine performing eigenvalue
calculations and computed the eigenvectors.

• We extracted 11 features from the eigenvectors and created an AI
model to predict bug occurrence rates.

• Using the AI model, we predicted the fault-proneness for the test
sequence and performed sorting.

• The proposed model achieved high prediction performance, enabling
effective prioritization of bug-prone test cases.

Acknowledgements
This work was supported by the Joint Usage/Research Center for Interdisciplinary
Large- scale Information Infrastructures (JHPCN) and the High-Performance
Computing Infrastructure (HPCI) under project number jh250015. In addition, this
work was funded by JSPS KAKENHI Grants JP23K11126 and JP24K02945.

References
[1] OSNI, A. M., CHRISTOF, V., JAMES, W. D., BERESFORD, N. P.: A Testing Infrastructure for Symmetric
Tridiagonal Eigensolvers，ACM Transactions on Mathematical Software，Vol. 35，No. 1，Article 8（2008）.

[2] Rothermel, G., Untch, R. H., Chu, C. and Harrold, M. J.: Prioritizing Test Cases For Regression
Testing, IEEE Transactions on Software Engineering, Vol. 27, No. 10, pp. 929–948 (Oct. 2001).

The problem numbers 1, 2, 3, 4 are
referred to as the test sequence.

This is a block of tests that can be
executed in a reordered sequence.

1 2 3 4 ･･･

The proposed model achieved a high F1-score and significantly
improved the APFD compared to random test sequences by optimizing
the execution order.

	スライド 1

