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Introduction
Background
Software testing is essential for quality 
assurance, but it carries significant execution 
costs.
Objective
Prioritize executing test cases prone to bugs 
to reduce the time required to detect bugs.
Proposal
 we proposed a machine learning model to 
predict the fault-proneness in eigenvalue 
computation test cases. 

LAPACK & STCollection

LAPACK
A numerical computing software library that provides routines for 
solving systems of linear equations, least squares problems, eigenvalue 
problems, and singular value problems.

STCollection[1]
A test routine that verifies procedures in LAPACK by performing 
eigenvalue computations on matrices with known theoretical solutions, 
using the QR method, the Divide and Conquer method, the 
Bisection/Inverse Iteration method, and the MRRR method. 

Proposed Method

1. For each test case in an unknown test sequence, calculate the eigenvector and 
statistical features, then perform data preprocessing.

2. Use the preprocessed data to predict the bug occurrence rate.
3. To improve the APFD score, the test sequence is reordered so that test cases with 

higher predicted fault-proneness are executed first.

APFD : Efficiency score of test sequence indicating how quickly bugs were found[2]
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Inject bugs into the LAPACK library
In this study, to simulate bugs in eigenvalue computations using the divide-and-conquer method within numerical computation libraries, we injected 
artificial faults into the main routines of LAPACK/BLAS.

Train an AI model
1. Injected a bug into LAPACK and compute the eigenvector.
2. Calculate 11 statistical feature representing numerical stability and 

differences from analytical solutions from the eigenvectors.
3. Train an AI model to predict bug occurrence rates using 11 statistical features 

as input.

11 statistical features : Features extracted from test matrices and computed 
eigenvectors, including their deviations from analytical solutions. Example 
metrics: Frobenius norm and spectral norm.

Optimize Test Sequence

dgemm : Matrix Multiplication dlaed3 : Eigenvector Merging dlaed4 : Secular Equation Solver

𝐶 = 𝛼 ∗ 𝑜𝑝 𝐴 ∗ 𝑜𝑝 𝐵 + 𝛽 ∗ 𝐶

Set 𝛼 close to 0
𝛼 → 0

This introduces uniform numerical errors in 
matrix operations.

This routine calls dgemm.Injected a bug into 
the calculation range of dgemm.
dgemm (transa, transb, m-1, n, k, …)

or
dgemm (transa, transb, m, n, k-1, …)

𝑑𝑖𝑎𝑔 𝐷 + 𝜌𝑍𝑍𝑇

This routine calculates eigenvalues through 
iterative computation.
Increasing the tolerance reduces accuracy.

Fig 1. Methods for Generating Training Data

Fig 2. Methods for Optimizing Test Sequences

Evaluation Result Conclusion

Metric Result

Accuracy 0.9335

Precision 0.9411

Recall 0.9658

F1 Score 0.9533

APFD

random 0.9751

optimized 0.9988

Table 1. Performance of the Bug 
Prediction Model

Table 2. APFD of the optimized test 
sequence

• We injected bugs into the LAPACK routine performing eigenvalue 
calculations and computed the eigenvectors.

• We extracted 11 features from the eigenvectors and created an AI 
model to predict bug occurrence rates.

• Using the AI model, we predicted the fault-proneness for the test 
sequence and performed sorting.

• The proposed model achieved high prediction performance, enabling 
effective prioritization of bug-prone test cases.
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The problem numbers 1, 2, 3, 4 are 
referred to as the test sequence.

This is a block of tests that can be 
executed in a reordered sequence.
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The proposed model achieved a high F1-score and significantly 
improved the APFD compared to random test sequences by optimizing 
the execution order.
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