

Verification of the Effectiveness of Deep Learning in Preprocessing Parameter Estimation for the Conjugate Gradient Method

Takamasa Nakaya¹, Takahiro KATAGIRI², Tetsuya HOSHINO², Daichi MUKUNOKI², Masatoshi KAWAI³
1:Graduate School of Informatics, Nagoya University, 2:Information Technology Center, Nagoya University, 3:Cyberscience Center, Tohoku University

Background and research objectives

- Increased value of optimal parameter settings through numerical simulation
 - Utilizing deep learning for automatic parameter optimization
- Related studies:
 - Direct derivation of preprocessing matrices using deep learning[1]
 - Prediction of single-precision and double-precision switching
- The investigations using deep learning models could not be confirmed.
 - Selection of storage precision **considering mixed precision**
 - the impact of selection performance** based on model prediction capability
- Deep learning-based automatic parameter tuning [2] was implemented.
- Target problem: ICTCG method

A) Effectiveness for model parameter selection:

- Storage accuracy selection including mixed precision

B) Model improvement and effective usage conditions:

- Impact of input parameters and model performance

ICTCG method

- A method that improves the effectiveness of IC decomposition by introducing parameters such as threshold and max fill-in level, used as a preprocessing step for the CG method.

- An example of the decomposition for $\mathbf{A} \approx \mathbf{U}^T \mathbf{D} \mathbf{U}$, $\mathbf{A}, \mathbf{D}, \mathbf{U} = \mathbb{R}^{n \times m}$ is shown.

$a_{i,j}$: the (i, j) -th element of \mathbf{A} , $d_{i,i}$: the (i, i) -th element of \mathbf{D} , $u_{i,j}$: the (i, j) -th element of \mathbf{U} , $f_{i,j}$: fill-in level of $u_{i,j}$, t :threshold, m :max fill-in level

$$d_{i,i} = a_{i,i} - \sum_{k=1}^{i-1} u_{k,i} d_{k,k} u_{k,j} \cdot f_{i,j} = \begin{cases} 0, & a_{i,j} \neq 0 \\ \min_{k=1 \dots i-1} (f_{i,k} + f_{k,i} + 1), & \text{else} \end{cases}$$
$$u_{i,j} = \begin{cases} d_{i,i}^{-1} \left(a_{i,j} - \sum_{k=1}^{i-1} u_{k,i} d_{k,k} u_{k,j} \right), & f_{i,j} \leq m \wedge |u_{i,j}| \geq t \\ 0, & \text{else} \end{cases}$$

Evaluation Settings and method

- λ : Thermal diffusion coefficient of the problem.
 - The larger the value, the longer the computation time required.

Training data: Used for model building **Test data:** Used for model evaluation

- Data is acquired by performing actual calculations using the Flow Type I.
- Test data was configured in the λ range falls below, within, or above the training data.

	Training Data	Test Data
Storage Precision of Matrices and Vectors	dd(only double), ss(only single), sd(Matrices: single, Vectors: double)	
Queue size	Square matrices of $128 \times 128 \times 128$ for both rows and columns	
Condition number λ	$1.0 \sim 1.0e5 \times 1$	$1.0e-5 \sim 1.0, 1.0 \sim 1.0e5, 1.0e5 \sim 5.0e5 \times 2$
Threshold	$1.0e-5 \sim 1.0 \times 1$	$1.0e-5 \sim 1.0 \times 2$
Max fill-in level	0, 1, 2	
Convergence condition	Relative residuals are $1.0e-07$ or less for both double and single	

- We constructed models using combinations of three batch sizes and four epoch counts and selected two of these combinations for use.

- High-performance model: Loss function is **minimized**
- Low-performance model: Loss function is **maximized**

- The model was generated using Keras on TensorFlow (ver. 2.4.1) by combining CNN and MLP.

Evaluation method

- Compare execution times for model output and actual calculations, obtain predicted and actual storage accuracy
- Evaluate the model's storage accuracy selection performance based on prediction accuracy.

※1:100 values on a base-10 logarithmically spaced scale in λ (threshold) range

※2:50 values on a base-10 logarithmically spaced scale in each λ (threshold) range

Evaluation results

Expected Results

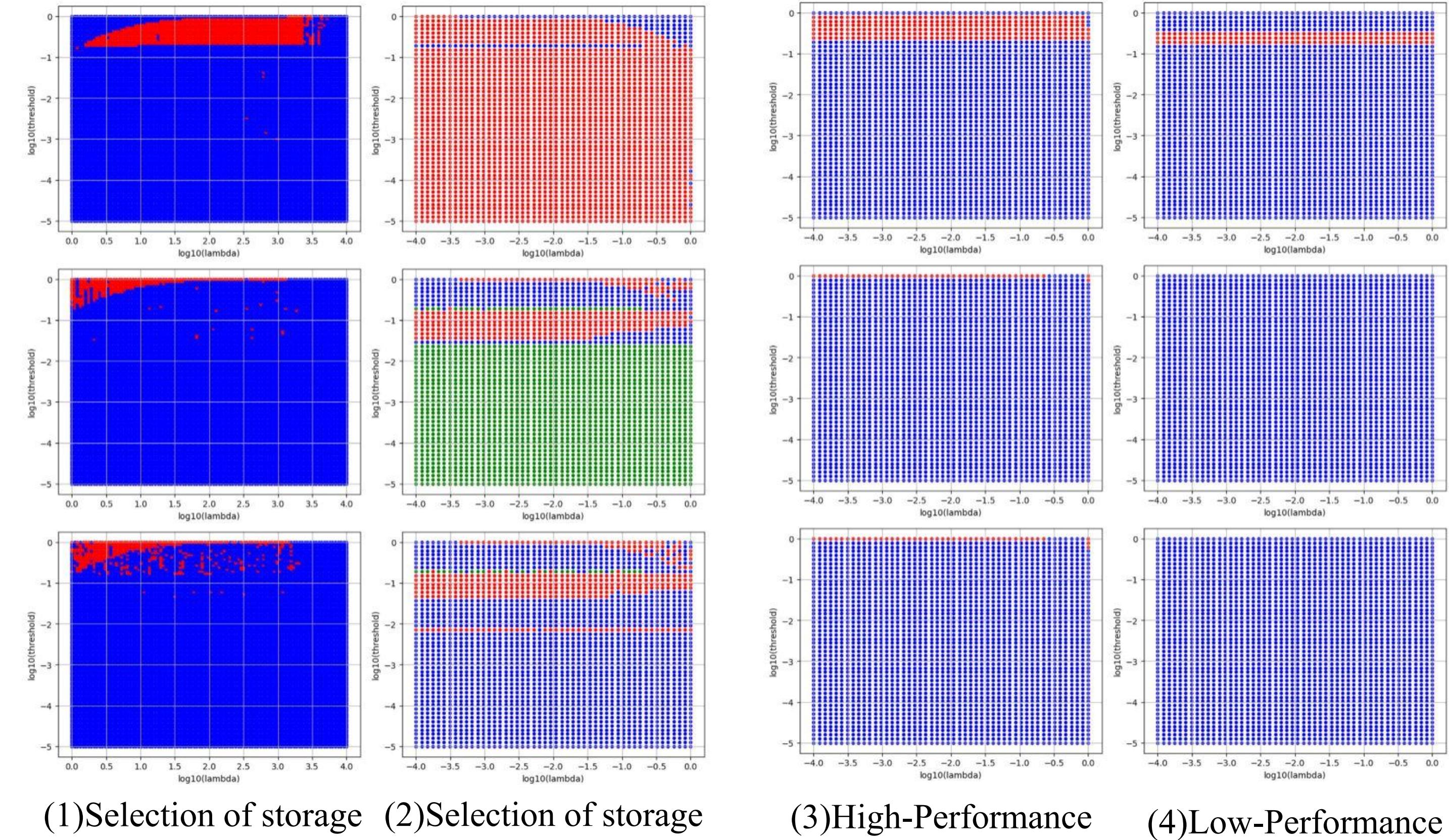
- High accuracy is achieved only for λ within the training range.
- Between the high-performance model and the low-performance model, the high-performance model achieves higher accuracy.

Evaluation Results

- The accuracy rate clearly decreased **only** within the λ range below the learning range.
- When λ was larger than the learning range, the **low-performance model demonstrated better prediction performance**.

Analysis

A) The results of selecting storage precision for training data and λ values within the range $1.0e-04$ to 1.0 are shown.



(1) Selection of storage precision in training data (2) Selection of storage precision in test data (3) High-Performance Model Prediction (4) Low-Performance Model Prediction

Horizontal axis: λ value, Vertical axis: Threshold, Top to bottom: Max fill-in levels 0, 1, 2. When λ value, threshold, and max fill-in level are fixed, the selected optimal storage accuracy is blue for dd, red for ss, and green for sd.

- The trends in (1) and (3), (4) are similar, while the trend in (2) differs.
 - Even across different λ ranges, the model strongly reflects the trend in the training data. This is the reason for the low accuracy rate.
- Within the range of λ from $1.0e04$ to $5.0e04$, **ss** was selected in most cases, showing a selection tendency similar to that observed in the learning range
 - This explains why high accuracy is achieved when the λ range is large.

B) The results of selecting storage accuracy for actual values within the λ range of $1.0e04$ to $5.0e04$, along with the priority for model selection, are shown.

※ "Completely match" > "within 5% error" > "Inappropriate" priority, with high > low colored green and high < low colored cyan.

- (6) shows that the low-performance model achieves good select at larger thresholds than the high-performance model.
- (5) indicates that **ss** tends to be selected when the threshold is large, but (1) shows that **ss** may also be selected in the training data.
- High performance may lead to overfitting, causing the model to incorrectly select **dd** instead of the intended **ss** in certain cases, which is thought to contribute to the decline in accuracy.

Summary and future work

- The proposed model and evaluation method achieved high accuracy in predicting storage precision within the learning range.
- The impact of model performance on parameter selection capability was inferred to be related to overfitting.

Future works

- Proposing method to handle a broader datasets with high predictive performance
- General applicability studies, such as those targeting issues beyond the ICTCG method

Acknowledgments

This research was supported by Grants-in-Aid for Scientific Research (JP23K11126, JP24K02945) from the Japan Society for the Promotion of Science (JSPS). It was also supported by the Interdisciplinary Large-Scale Information Infrastructure Joint Research Center (JHPCN) and the Innovative High-Performance Computing Infrastructure (HPCI) (Project Numbers: jh250015, jh250018).