A Pertormance Analysis of Vector Arithmetic with
Expression Template in Supercomputer Fugaku

Yukinhiro Ota

Dept. of HPC support, Research Organization for Information Science and Technology, Kobe, Japan

Abstract

Expression template (ET) is a template programming technigue in C++ for efficient operator overloading on array-
type objects. Compilers can interpret an ET-based code as a C-like one suitable for optimization. The expected
behaviors of ET on performance can reply on its implementation and the characteristics of compilers. In this poster,
we evaluate the performance in simple compute-bound kernels composed of vector arithmetic with ET in an Arm-
based massively parallel computer, Supercomputer Fugaku, changing kinds of compilers available there. We show
that Fujitsu Clang, GNU, and LLVM successfully apply compiler's optimization like auto-vectorization to ET-based
kernels. Thus, we can understand the characteristics of the compilers in Fugaku.

Introduction

Expression templates (ET)

® E£T [1] isatemplate programming technique in C++ for efficient operator overloading on array-type objects.
® The key ideas are(i) to remove unnecessary temporal objects with the lazy evaluation and (il) to complete
function inlining in expressions composed of overloaded operators.
® The code with ET can be regarded as C-like implementations (e.g., explicit loops), whose forms are suitable
for the compiler optimization, such as auto-vectorization.
® Use of ET can lead to writing scientific codes with ease and performance comparable with low-level codes.
® ET and its advanced version are used in various C++ libraries, such as Eigen
(https://gitlab.com/libeigen/eigen) and Boost.Yap (https//www.boost.org/doc/libs/latest/doc/html/yap.html).
® This expected behavior of ET on performance replies on its implementation and kinds of compilers [1,2].

Motivation

® e desire to know the elementary properties of C++ compilers in Supercomputer Fugaku (A64FEX), to
enhanced performance and avoid for pitfalls on performance.

® To thisend, we study a simple compute-bound kernel with ET on various kinds of C++ compilers in Fugaku.
® Currently, Fujitsu (Clang/Trad), GNU, LLVM, and Arm are available in Fugaku [3].
® REMARK: The authors previously found that ET with Fujitsu C++ in Supercomputer K (SPARCK VIIIfx)
did not hide the penalties on performance of operator overloading (YO et al.,, HPCI| Research Report 3

(2018) 46-57 [in Japanese]).

® Understanding the strong points and characteristics of compilers can be helpful for the C++ users in Fugaku.
® One can complementally use different kinds of compilers to obtain good performance in C++ applications.

® cf. An optimization of GROMACS in Fugaku by combining Fujitsu with GNU/Arm is reported [4].

Goals

® \We evaluate the performance in simple compute-bound kernels with ET in Fugaku, changing kinds of

compilers.

® Ve study and understand how the compiler optimization enhances the performance in the ET-based kernels,

depending on kinds of compilers in Fuga

Methods

Implementation of vector arithmetic with ET

ku.

® \We implement vector-arithmetic class with ET using std:array, according to the idea in [5], within C++14 standard.
® 1. First, we define a class for “Expression” and arithmetic operations.
®). Second, using these classes, we define a vector-arithmetic class as vector_et.

Results

¢

RIST

TAKE HOME MESSAGE
® Fujitsu Clang, GNU, and LLVM are suitable for vector arithmetic with ET in Fugaku. Particularly, auto-

vectorization is successfully applied to overloaded vector-arithmetic operations.

current experiments. In contrast, interleaving works well.

® |nstruction scheduling by software pipelining does not positively contribute to performance in ET, within the

// 1. To define “Expression” and arithmetic operations
template <typename LExp, typename BOp, typename RExp>
class Expression
{
public:
Expression(LExp 1, RExp _r)
// Expression for addition
template <typename RE>
inline auto operator+ (RE&& re) const -> decltype(auto) {
return Expressionc<
Expression<LExp,BOp,RExp> const &,
plus_op<decltype(std: :forward<RE>(re))>,

}

// Expression for multiplication is defined by a similar way

inline auto operator [](int index) const -> decltype(auto) {
return BOp::apply(l[index], r[index]);
}

private:

LExp 1;

RExp r;
}s

template <typename T> struct plus op {

static T apply(T const& a, T const& b) { return a + b; }
}s
template <typename T> struct mult op {

static T apply(T const& a, T const& b) { return a * b; }

s

: 1(std::forward<LExp>(_1)), r(std::forward<RExp>(_r)) {}

decltype(std: :forward<RE>(re)) > (*this, std::forward<RE>(re));

// 2. Vector-arithmetic class with Expression Template, based on std::array
template <int N>
class vector et

{

using impl type = std::array<double, N>;

public:
typedef typename impl type::value type value_type;

template <typename R>

inline vector et& operator =(R&& re) {// Assignment (Lazy evaluation)
for (int i=0; i<N; ++i) { v[i] = re[i]; }
return *this;

}

template <typename R>
inline auto operator +(R&& re) const -> decltype(auto){// Addition (No evaluation)
return Expressionc<
vector_et const&,
plus_op<value type>,
decltype(std::forward<R>(re)) >(*this, std::forward<R>(re));
}

// Multiplication is defined by a similar way

private:
impl_type v;
¥

[Pluaﬂnp::nppltf(x,y)J for (

Here, we hoFE'thE npphtntkwun?:
* Auto-vectorization

int 1=0;i<N;++)

* LE:DP unrc:“inﬁrl Inter[eavimj

GFlop/s: ET versus C-like
The red circle indicates that ET is equivalent to C-like on

performance, including ficlang (up to the 4th deg.) (O),

ficlang.vla (

arm (up to the 1st deg.) (0).
® Asfor the 8th degree in fjclang, the performance is
still compatible with fjclang.vla, gnu, and llvm (See
the table and figure right below).

performance.

Otherwise, ET shows significant decrease of

Auto-vectorization and instruction scheduling in ET
® To understand the results, we closely observe SIMD

), gnu (¥¢), llvm (up to the 8th deg.) (V/), and

Instruction rate and IPC, focusing on the Ist- and 8th-
degree polynomials.

® On the lst degree (
® SIMD inst. rates of ET are high, except for fjtrad.

):

® On ET with fjtrad, auto-vectorization is suppressed.

The significant lower performance than C-like occurs.
® On the 8th degree (

_J):

Polynomial of vector arithmetic in Fugaku [A64FX (2.0GHz), 1 core]

| €3 ficlang 1=} fitrad -4 llvm
-/ ficlang.vla -#¢ gnu ©arm

]
| e e T L L Lol) e ""'-,__h %
O] M —_— .

=] S be'i\"--..
— R S [ttt
. < \ O
= B :

\._\ \'l.
By
- ;
- A}
[T - 3 Gﬁ_ 4
o S S~ e \
-l'.._{l_ \\.“ ‘-"“n..‘_ A
8. S ""--..._‘h \\
- -1 4__ 0 8 e e] h@-- ________ A]
L 10 Ew‘_ \\ \'I
L:' "‘-1..5 -\ \\
w .""h..__h \\ \
] "-..._h \\ \\
2 g N
-:'E \.“ \\\ \‘.\
L - .
2 TR
“"\ \\\\.
“’\
L e e e ——————— e E——————
_* I * I
1 4 16

® Both of SIMD inst. rates and IPCs of ET are equivalent to C-like,
except for fjclang, fjtrad, and arm.
® On ET with fjclang, the lower IPC than C-like indicates that software
pipelining does not work.
® Thisis contract to interleaving (See IPCs in fjclang.vla and llvm).

® On ET with fjtrad and arm, auto-vectorization is suppressed.

1st-degree polynomial

ET

C-like

SIMD instruction [PC

rate (%)
ficlang 90.3 0.868
ficlang.vla 72.4 1.27
fjtrad 0.00 2.87
gnu 81.7 0.966
llvm 89.3 0.669
arm 80.2 0.890

SIMD instruction
rate (%)

86.11
72.5
78.4
66.6
75.6

75.6

IPC

0.964

1.31

1.03

1.34

0.987

1.03

Polynomial of vector arithmetic in Fugaku [A64FX (2.0GHz), 1 core]

. ET
70 T mmm Clike

R
T

GFlop/s

Theoretical peak (2.2GHz, DP)

R P S R R R P S -

1st-degree polynomial

ficlang fjclang.vla

fitrad

(Num of vector elements=10000} -

L e £ L -
L
7
L T ir

o NE__NE N NN =N =N

gnu

CPU performance analysis

"Cycle Accounting" of ficlang in Fugaku [A64FX (2.0GHz), 1 core]

8th-degree

1.2 1--polynomial (N=10000) .

0.77sec.

0.48sec.

o o o =
IS o o) (=)
L

Normalized timing breakdown

o
(N

Other inst. commit
4 inst. commit

3 inst. commit

2 inst. commit

1 inst. commit
Barrier sync. wait
Inst. fetch wait
Store wait

Other wait
Branch wait

FP op. wait
Integer op. wait
FP load wait(L1D)
FP load wait(L2)

Prefetch wait(Soft)
Prefetch wait(Hard)

Integer load wait(L1D)
Integer load wait(L2)

FP load wait(Memory)
Integer load wait(Memory) |

o
0

©
S

Normalized timing breakdown

o
(N

Polynomial's degree

Ideal

Effects of interleaving in Fujitsu Clang with ET
On the 8th degree polynomial:

® fjclang.vla: GFlop/s =212

® ficlang.vla w/o interleaving: GFlop/s =18.9

8th-degree polynomial

ET C-like

SIMD instruction IPC SIMD instruction IPC

rate (%) rate (%)
ficlang 92.1 1.05 88.5 1.81
ficlang.vla 85.0 1.27 85.1 1.26
fjtrad 0.00 1.56 89.4 1.91
gnu 92.2 1.06 81.2 1.18
[lvm 87.6 1.11 87.6 1.15
arm 0.00 1.35 87.6 1.11

Polynomial of vector arithmetic in Fugaku [A64FX (2.0GHz), 1 core]

. T
70 T mmm C-like

ficlang

ficlang.vla

Theoretical peak (2.2GHz, DP)
8th-degree polynomial
60 - {(Num-of vector-etements=10000)-

W —_—_ -

fitrad gnhu

arm

"Cycle Accounting" of gnu in Fugaku [A64FX (2.0GHz), 1 core]

/

"Cycle Accounting” of llvm in Fugaku [A64FX (2.0GHz), 1 core]

=
o
1

©
[#)]
1

8th-degree

0.77sec.

0.88sec.

S S L R DY R

* Software PIFE,[E nin g

.*'_a:-."-if Evnfuatian
Kernels

® The kernels to be measured are to calculate polynomials with Honer's method.
® cf 9th-degree polynomial in EuroBen (https;//www.euroben.nl/).
® [ncreasing the degree of polynomials, the kernels become compute-bound ones.
® The kernels are composed of FMA. The number of FMA is the degree of the polynomial.
® The array elements are expected to be residents in registers.
® \We measure the performance of the Ist-, 4th-, 8th-, and leth-degree polynomials.
® For reference, we measure that of the corresponding C-like implementations (i.e., use of explicit loops).

// Corresponding C-like implementation
double x[N],cO[N],c1[N];
for (int i=0; i<N; i++) {
x[1i] = cO[i]
+ x[1]*(c1[i] +x[i]*(cO[i] +x[i]*(c1[i] +x[i]*(cO[i]
+ x[11*(c1[i] +x[i]*(cO[i] +x[i]*(c1[i] +x[i]*(cO[1i]
))));

// ET implementation: 8th-degree polynomial
vector_et<N> x, c@, cl;
X = €O +x*(cl +x*(cO +x*(cl +x*(co

+ X*(cl +x*(cO +x*(cl +x*c0)))))));

Kinds of compilers to be investigated

Label C++ compiler (version) Vector length

512-bit

Main options for compiler’s optimization

ficlang Fujitsu Clang (4.12.1) -Ofast -fvectorize -ffj-swp

ficlang.vla Fujitsu Clang (4.12.1) VLA -Ofast -fvectorize -ffj-interleave-loop-insns=4

fitrad Fujitsu Trad (4.12.1) 512-bit -Kfast -Ksimd=auto -Kswp -Kswp_policy=auto

gnu GNU (12.2.0) 512-bit -Ofast -free-vectorize -ftree-loop-vectorize -funroll-loops

[lvm LLVM (21.1.0) 512-bit -O3 -ffast-math -fvectorize -mllvm -force-vector-interleave=4

arm Arm (24.0) 512-bit -Ofast -fvectorize -mllvm -force-vector-interleave=4

® As for all the cases, the instruction sets corresponds to armv8.3-a+sve.

® The options related to instruction scheduling are software pipelining (swp), interleaving, and unrolling.

® CNU, LLVM, and Arm are used only for generating the objects of the main kernels. Linking objects is performed by
Fujitsu compiler, to use Fujitsu's profiler tools.

Settings
® Data size: We set the array size of each vector as 10000 (N=10000),

® (Total amount of memory) < 8 MiB(Size of L2 cache per CMG in Fugaku).
® Precision: We take double precision in all the measurements.

Number of vector 10000

elements

Precision double precision

® Power: We use “normal mode” in all the measurements. Power setting AT
® Clock speed = 2.0 GHz, Eco mode of cores = O (eco_state=0) [3]. =
Number of used 1

® Number of used cores: We run all the calculations with a single core in Ab4FX. cores

Methods of measuring performance
® \We use Fujitsu Advanced Performance Profiler (fapp) [3] to obtain performance date including elapsed time,
GFlop/s, and so on, according to the measured hardware-counter information.

0.0 -

® On ET with fjclang

® On ET with gnu

® On ET with llvm

Perspectives

We have two future issues.

Summary

Contact address: yota@rist.or.jp

Science.
Reference

user-group/isc25-ahug-workshop

https://vyskocil.com/icsc-2016/

® \Wait time for FP operations |

® \Wait time for FP load (L1D) (

0.0

+--polynomial (N=10000)..

Other inst. commit

4 inst. commit

3 inst. commit

2 inst. commit

1 inst. commit
Barrier sync. wait
Inst. fetch wait

Store wait

Other wait

Branch wait

FP op. wait

Integer op. wait

FP load wait(L1D)

FP load wait(L2)
Integer load wait(L1D)
Integer load wait(L2)
FP load wait(Memory)

Integer load wait(Memory) |

Prefetch wait(Soft)
Prefetch wait(Hard)

8th-degree

1.2 +--polynomial (N=10000)..

Other inst. commit
4 inst. commit

mmm 3 inst. commit
N 2 inst. commit
c 1.0 B 1 inst. commit
g B Barrier sync. wait
I Inst. fetch wait
E 0.8 - N Store wai.t
o Other wait
c B Branch wait
£ FP op. wait
-t 0.6 - EEE Integer op. wait
g FP load wait(L1D)
© == FP load wait(L2)
€ 0.4 Integer load wait(L1D)
3 mm Integer load wait(L2)
Emm FP load wait(Memory)
1757 — B Integer load wait(Memory) |
Prefetch wait(Soft)
mmm Prefetch wait(Hard)
0.0

ET clike

(1) To implement ET for software pipelining
® The result of CPU PA indicates that hiding or removing the latency of (unexpected) integer operations is required.
(2) To implement ET for compiler-based generation of GPU code.
® Use of directives in OpenACC or OpenMP offloading is a good candidate.
® Indeed, we perform an initial experiment with OpenACC and NVIDIA HPC SDK (23.11) in NVIDIA A100. However:
® The routine directive with gang for GPU parallelization does not work, within our trials.
® Function inlining associated with the lazy evaluation leads to a sequential code.
® \We will need to seek a suitable implementation of ET for GPU.

® Again, there is no significant difference between ET and C-like.
) slightly increases, compared to fjclang and gnu.

ET c-like

® To fully understand instruction processing, we perform CPU performance analysis (PA) by fapp [3].
® The timing data of the hardware counters are collected. The normalization is done by the elapsed time.

® \Wait time for integer operations (M) shows a marked behavior, compared to C-like.
® This walt time does not appear in gnu and llvm.

[1] D.Vandevoorde, N. M. Josuttis and D. Gregor, 2018, C++ Templates: The complete Guide (2nd ed.), Addison-Wesley, Boston.
[2] K. Iglberger, G. Hager, J. Treibig and U. Ruede, 2012, Expression Templates Revisited: A Performance Analysis of the Current ET Methodology, SIAM
J. on Sci. Comput. 34(2), C42-C69. https://doi.org/10.1137/110830125
[3] Fugaku User Guide - Language and development environment. https://www.r-ccs.riken.jp/en/fugaku/user-manuals/
[4] G. Gouaillardet, Porting and tuning GROMACS on Arm SVE, in The 2025 Arm HPC User Group (AHUG) Workshop, https;//github.com/arm-hpc-

® Timing breakdown is almost equal to C-like although slight differences on instruction commits exist.
) is major. Instruction scheduling is not good, compared to fjclang.

We study the characteristics of compilers in Fugaku via ET-based vector-arithmetic kernels. We find that Fujitsu
Clang, GNU, and LLVM successfully apply auto-vectorization to the kernels. Implementing ET towards software
pipelining is a future issue. Another future issue is the application of our approach with ET to GPU codes.

Acknowledgements: This research used computational resources of the supercomputer Fugaku provided by the RIKEN Center for Computational

[5] Jiri Vyskocil, Template Metaprogramming for Massively Parallel Scientific Computing in Inverted CERN School of Computing 2016..

	スライド 1

