
Template ID: persuadingsapphire Size: 36x48

A Performance Analysis of Vector Arithmetic with
Expression Template in Supercomputer Fugaku

Yukihiro Ota
Dept. of HPC support, Research Organization for Information Science and Technology, Kobe, Japan

Expression template (ET) is a template programming technique in C++ for efficient operator overloading on array-
type objects. Compilers can interpret an ET-based code as a C-like one suitable for optimization. The expected
behaviors of ET on performance can reply on its implementation and the characteristics of compilers. In this poster,
we evaluate the performance in simple compute-bound kernels composed of vector arithmetic with ET in an Arm-
based massively parallel computer, Supercomputer Fugaku, changing kinds of compilers available there. We show
that Fujitsu Clang, GNU, and LLVM successfully apply compiler’s optimization like auto-vectorization to ET-based
kernels. Thus, we can understand the characteristics of the compilers in Fugaku.

Abstract Results

Expression templates (ET)
⚫ ET [1] is a template programming technique in C++ for efficient operator overloading on array-type objects.

⚫ The key ideas are(i) to remove unnecessary temporal objects with the lazy evaluation and (ii) to complete
function inlining in expressions composed of overloaded operators.

⚫ The code with ET can be regarded as C-like implementations (e.g., explicit loops), whose forms are suitable
for the compiler optimization, such as auto-vectorization.

⚫ Use of ET can lead to writing scientific codes with ease and performance comparable with low-level codes.
⚫ ET and its advanced version are used in various C++ libraries, such as Eigen

(https://gitlab.com/libeigen/eigen) and Boost.Yap (https://www.boost.org/doc/libs/latest/doc/html/yap.html).
⚫ This expected behavior of ET on performance replies on its implementation and kinds of compilers [1,2].

Motivation
⚫ We desire to know the elementary properties of C++ compilers in Supercomputer Fugaku (A64FX), to

enhanced performance and avoid for pitfalls on performance.
⚫ To this end, we study a simple compute-bound kernel with ET on various kinds of C++ compilers in Fugaku.

⚫ Currently, Fujitsu (Clang/Trad), GNU, LLVM, and Arm are available in Fugaku [3].
⚫ REMARK: The authors previously found that ET with Fujitsu C++ in Supercomputer K (SPARCK VIIIfx)

did not hide the penalties on performance of operator overloading (YO et al., HPCI Research Report 3
(2018) 46-57 [in Japanese]).

⚫ Understanding the strong points and characteristics of compilers can be helpful for the C++ users in Fugaku.
⚫ One can complementally use different kinds of compilers to obtain good performance in C++ applications.

⚫ cf. An optimization of GROMACS in Fugaku by combining Fujitsu with GNU/Arm is reported [4].

Goals
⚫ We evaluate the performance in simple compute-bound kernels with ET in Fugaku, changing kinds of

compilers.
⚫ We study and understand how the compiler optimization enhances the performance in the ET-based kernels,

depending on kinds of compilers in Fugaku.

Introduction

Methods
Implementation of vector arithmetic with ET
⚫ We implement vector-arithmetic class with ET using std::array, according to the idea in [5], within C++14 standard.

⚫ 1. First, we define a class for “Expression” and arithmetic operations.
⚫ 2. Second, using these classes, we define a vector-arithmetic class as vector_et.

Kernels
⚫ The kernels to be measured are to calculate polynomials with Honer’s method.

⚫ cf. 9th-degree polynomial in EuroBen (https://www.euroben.nl/).
⚫ Increasing the degree of polynomials, the kernels become compute-bound ones.

⚫ The kernels are composed of FMA. The number of FMA is the degree of the polynomial.
⚫ The array elements are expected to be residents in registers.

⚫ We measure the performance of the 1st-, 4th-, 8th-, and 16th-degree polynomials.
⚫ For reference, we measure that of the corresponding C-like implementations (i.e., use of explicit loops).

Kinds of compilers to be investigated

⚫ As for all the cases, the instruction sets corresponds to armv8.3-a+sve.
⚫ The options related to instruction scheduling are software pipelining (swp), interleaving, and unrolling.
⚫ GNU, LLVM, and Arm are used only for generating the objects of the main kernels. Linking objects is performed by

Fujitsu compiler, to use Fujitsu’s profiler tools.

Settings
⚫ Data size: We set the array size of each vector as 10000 (N=10000),

⚫ (Total amount of memory) < 8 MiB(Size of L2 cache per CMG in Fugaku).
⚫ Precision: We take double precision in all the measurements.
⚫ Power: We use “normal mode” in all the measurements.

⚫ Clock speed = 2.0 GHz, Eco mode of cores = 0 (eco_state=0) [3].
⚫ Number of used cores: We run all the calculations with a single core in A64FX.

Methods of measuring performance
⚫ We use Fujitsu Advanced Performance Profiler (fapp) [3] to obtain performance date including elapsed time,

GFlop/s, and so on, according to the measured hardware-counter information.

// 1. To define “Expression” and arithmetic operations

template <typename LExp, typename BOp, typename RExp>

class Expression

{

 public:

 Expression(LExp _l, RExp _r) : l(std::forward<LExp>(_l)), r(std::forward<RExp>(_r)) {}

 // Expression for addition

 template <typename RE>

 inline auto operator+ (RE&& re) const -> decltype(auto) {

 return Expression<

 Expression<LExp,BOp,RExp> const &,

 plus_op<decltype(std::forward<RE>(re))>,

 decltype(std::forward<RE>(re)) > (*this, std::forward<RE>(re));

 }

 // Expression for multiplication is defined by a similar way

 inline auto operator [](int index) const -> decltype(auto) {

 return BOp::apply(l[index], r[index]);

 }

 private:

 LExp l;

 RExp r;

};

template <typename T> struct plus_op {

 static T apply(T const& a, T const& b) { return a + b; }

};

template <typename T> struct mult_op {

 static T apply(T const& a, T const& b) { return a * b; }

};

// 2. Vector-arithmetic class with Expression Template, based on std::array

template <int N>

class vector_et

{

 using impl_type = std::array<double, N>;

 public:

 typedef typename impl_type::value_type value_type;

 template <typename R>

 inline vector_et& operator =(R&& re) {// Assignment (Lazy evaluation)

 for (int i=0; i<N; ++i) { v[i] = re[i]; }

 return *this;

 }

 template <typename R>

 inline auto operator +(R&& re) const -> decltype(auto){// Addition (No evaluation)

 return Expression<

 vector_et const&,

 plus_op<value_type>,

 decltype(std::forward<R>(re)) >(*this, std::forward<R>(re));

 }

 // Multiplication is defined by a similar way

 private:

 impl_type v;

};

// ET implementation: 8th-degree polynomial
vector_et<N> x, c0, c1;
x = c0 +x*(c1 +x*(c0 +x*(c1 +x*(c0

+ x*(c1 +x*(c0 +x*(c1 +x*c0)))))));

// Corresponding C-like implementation

double x[N],c0[N],c1[N];

for (int i=0; i<N; i++) {

x[i] = c0[i]

+ x[i]*(c1[i] +x[i]*(c0[i] +x[i]*(c1[i] +x[i]*(c0[i]

+ x[i]*(c1[i] +x[i]*(c0[i] +x[i]*(c1[i] +x[i]*(c0[i]

))))))));

}

Label C++ compiler (version) Vector length Main options for compiler’s optimization

fjclang Fujitsu Clang (4.12.1) 512-bit -Ofast -fvectorize -ffj-swp

fjclang.vla Fujitsu Clang (4.12.1) VLA -Ofast -fvectorize -ffj-interleave-loop-insns=4

fjtrad Fujitsu Trad (4.12.1) 512-bit -Kfast -Ksimd=auto -Kswp -Kswp_policy=auto

gnu GNU (12.2.0) 512-bit -Ofast -free-vectorize -ftree-loop-vectorize -funroll-loops

llvm LLVM (21.1.0) 512-bit -O3 -ffast-math -fvectorize -mllvm -force-vector-interleave=4

arm Arm (24.0) 512-bit -Ofast -fvectorize -mllvm -force-vector-interleave=4

Summary

Number of vector

elements

10000

Precision double precision

Power setting 2.0GHz,

eco_state=0

Number of used

cores

1

We study the characteristics of compilers in Fugaku via ET-based vector-arithmetic kernels. We find that Fujitsu
Clang, GNU, and LLVM successfully apply auto-vectorization to the kernels. Implementing ET towards software
pipelining is a future issue. Another future issue is the application of our approach with ET to GPU codes.

Contact address: yota@rist.or.jp
Acknowledgements: This research used computational resources of the supercomputer Fugaku provided by the RIKEN Center for Computational
Science.
Reference
[1] D. Vandevoorde, N. M. Josuttis and D. Gregor, 2018, C++ Templates: The complete Guide (2nd ed.), Addison-Wesley, Boston.
[2] K. Iglberger, G. Hager, J. Treibig and U. Ruede, 2012, Expression Templates Revisited: A Performance Analysis of the Current ET Methodology, SIAM
J. on Sci. Comput. 34(2), C42-C69. https://doi.org/10.1137/110830125
[3] Fugaku User Guide - Language and development environment. https://www.r-ccs.riken.jp/en/fugaku/user-manuals/
[4] G. Gouaillardet, Porting and tuning GROMACS on Arm SVE, in The 2025 Arm HPC User Group (AHUG) Workshop, https://github.com/arm-hpc-
user-group/isc25-ahug-workshop
[5] Jiří Vyskočil, Template Metaprogramming for Massively Parallel Scientific Computing in Inverted CERN School of Computing 2016..
https://vyskocil.com/icsc-2016/

ET C-like

SIMD instruction

rate (%)

IPC SIMD instruction

rate (%)

IPC

fjclang 90.3 0.868 86.11 0.964

fjclang.vla 72.4 1.27 72.5 1.31

fjtrad 0.00 2.87 78.4 1.03

gnu 81.7 0.966 66.6 1.34

llvm 89.3 0.669 75.6 0.987

arm 80.2 0.890 75.6 1.03

ET C-like

SIMD instruction

rate (%)

IPC SIMD instruction

rate (%)

IPC

fjclang 92.1 1.05 88.5 1.81

fjclang.vla 85.0 1.27 85.1 1.26

fjtrad 0.00 1.56 89.4 1.91

gnu 92.2 1.06 81.2 1.18

llvm 87.6 1.11 87.6 1.15

arm 0.00 1.35 87.6 1.11

GFlop/s: ET versus C-like
⚫ The red circle indicates that ET is equivalent to C-like on

performance, including fjclang (up to the 4th deg.) (◯),
fjclang.vla (△), gnu (☆), llvm (up to the 8th deg.) (▽), and
arm (up to the 1st deg.) (◊).
⚫ As for the 8th degree in fjclang, the performance is

still compatible with fjclang.vla, gnu, and llvm (See
the table and figure right below).

⚫ Otherwise, ET shows significant decrease of
performance.

1st-degree polynomial 8th-degree polynomial

Auto-vectorization and instruction scheduling in ET
⚫ To understand the results, we closely observe SIMD

instruction rate and IPC, focusing on the 1st- and 8th-
degree polynomials.

⚫ On the 1st degree ():
⚫ SIMD inst. rates of ET are high, except for fjtrad.
⚫ On ET with fjtrad , auto-vectorization is suppressed.

The significant lower performance than C-like occurs.

CPU performance analysis

⚫ To fully understand instruction processing, we perform CPU performance analysis (PA) by fapp [3].
⚫ The timing data of the hardware counters are collected. The normalization is done by the elapsed time.

⚫ On ET with fjclang
⚫ Wait time for integer operations (■) shows a marked behavior, compared to C-like.
⚫ This wait time does not appear in gnu and llvm.

⚫ On ET with gnu
⚫ Timing breakdown is almost equal to C-like although slight differences on instruction commits exist.
⚫ Wait time for FP operations (■) is major. Instruction scheduling is not good, compared to fjclang.

⚫ On ET with llvm
⚫ Again, there is no significant difference between ET and C-like.
⚫ Wait time for FP load (L1D) (■) slightly increases, compared to fjclang and gnu.

TAKE HOME MESSAGE
⚫ Fujitsu Clang, GNU, and LLVM are suitable for vector arithmetic with ET in Fugaku. Particularly, auto-

vectorization is successfully applied to overloaded vector-arithmetic operations.
⚫ Instruction scheduling by software pipelining does not positively contribute to performance in ET, within the

current experiments. In contrast, interleaving works well.

Perspectives

⚫ On the 8th degree ():
⚫ Both of SIMD inst. rates and IPCs of ET are equivalent to C-like,

except for fjclang, fjtrad, and arm.
⚫ On ET with fjclang, the lower IPC than C-like indicates that software

pipelining does not work.
⚫ This is contract to interleaving (See IPCs in fjclang.vla and llvm).

⚫ On ET with fjtrad and arm, auto-vectorization is suppressed.

Effects of interleaving in Fujitsu Clang with ET
On the 8th degree polynomial:
⚫ fjclang.vla: GFlop/s = 21.2
⚫ fjclang.vla w/o interleaving: GFlop/s = 18.9

We have two future issues.
(1) To implement ET for software pipelining
⚫ The result of CPU PA indicates that hiding or removing the latency of (unexpected) integer operations is required.
(2) To implement ET for compiler-based generation of GPU code.
⚫ Use of directives in OpenACC or OpenMP offloading is a good candidate.

⚫ Indeed, we perform an initial experiment with OpenACC and NVIDIA HPC SDK (23.11) in NVIDIA A100. However:
⚫ The routine directive with gang for GPU parallelization does not work, within our trials.
⚫ Function inlining associated with the lazy evaluation leads to a sequential code.

⚫ We will need to seek a suitable implementation of ET for GPU.

	スライド 1

