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Challenges

However, as dataset sizes scale beyond couple of million images, 1/0
bottlenecks and CPU operations introduce significant delays in pre-training [2].
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Introduction

Pre-training Vision Transformers (ViTs) conventionally relies on large-scale
iImage corpora, often comprising millions of samples.
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Method - Original Torch Vision Pipeline

Synthetic datasets have emerged as a promising alternative,
particularly within the framework of Formula-Driven
Supervised Learning (FDSL) [1], which employs mathematically
defined fractals and complex geometric constructs for pre-
training, followed by fine-tuning on downstream real-world
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» The original pipeline retrieves one image per worker from disk storage.

tasks. _ _ o |t performs multiple format conversions (PNG, PIL, and tensor).
w; (x; 0;) = ? Zl Y + Jecz: —  This results in a significant bottleneck due to concurrent file access by all workers.
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Synthetic =8 f.. YO f.. yo--u  *» We proposed a tensor-based fractal generation pipeline to minimize CPU involvement.
R R RS * We implement an IFS renderer in C/Python through a PyBind11 interface. The C backend
receives the IFS parameters and generates the fractal images directly in memory.
« Our pipeline generates fractal images on the fly during data loading, reducing format
conversions and |/O overhead while enabling high-throughput execution.
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Preliminary Results

Loading 1M Images utilizing 8GPUs.
2 = ? Pre-Training DeiT-Tiny.
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Loading Images using 1 GPU.
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Experimental Set-up
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We follow Nakamura et al. [3], restricting
the dataset to one fractal instance per
class. All experiments were executed on
the ABCI 3.0 with the following specs:
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On the experiments: d ABCI

« 20 workers per GPU.
» Dataset: RT-FractalDB (1M images)

* We scale to a full eight-GPU node in distributed mode -
and vary the batch size (BS) to show performance.

* Our approach maintains nearly constant loading times
across all BS, remaining below 20s due to efficient o
parallel rendering and direct tensor retrieval.

* TorchVision requires Tm 12s compared to only 13.7s

The TorchVision pipeline exhibits severe latency that
Is 4x larger than our approach when loading 1M
Images on a single. GPU.

Our method completes a full epoch using DeiT-Tiny
In Tm 4s, whereas the TorchVision requires 2m 4s.
Our method can reduce the end-to-end training time

* Model: DeiT-Tiny. using our approach.

by nearly 50%.

Conclusion & Future Work

« We propose a tensor-based fractal generation pipeline that eliminates
disk access and image decoding (e.g., PNG/JPEG), reducing |I/O overhead
and achieving up to a 3.95x improvement in data-loading throughput.

* We plan to conduct more detailed profiling on larger datasets (e.g., 10M,
21M, and beyond), scaling to multiple nodes with hundreds of GPUs.
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