
User Support for Full-System Execution
on the Supercomputer Fugaku

Naoki Sueyasu, Tatsunobu Kokubo,
Yukihiro Ota, Masato Matsui, Hiroshi Kobayashi,

Yoshihisa Shizawa, Asako Terasawa, Eiji Tomiyama,
Gilles Gouaillardet, Daisuke Matsuoka

SCA/HPCAsia 2026
January 26-29, 2026, Osaka, Japan

Research Organization for Information Science and Technology (RIST) ,
Kobe, Japan

1

Background and Motivation

The Research Organization for Information Science and Technology
(RIST) provides support for users of the High Performance Computing
Infrastructure (HPCI) in Japan.

As part of the support, RIST assists with large-scale executions on the
full system of the supercomputer Fugaku. Fugaku is a massively
parallel system consisting of 158976 nodes, each equipped with a
single A64FX CPU based on the Arm architecture.

A full-system execution refers to an event in which nearly all resources
of Fugaku are allocated to a single project to run extremely large-scale
jobs.

These events are typically scheduled twice a year. Over the past two
years, RIST has supported 8 of the 13 projects awarded for the full-
system execution [1].

2

Additional Requirements Specific to Full-
System Executions

In addition to challenges associated with conventional jobs involving
thousands of processes, full-system executions impose additional
requirements specific to the extreme-scale computing:
R1. The application must exhibit extremely high inherent parallelism.

R2. Parallelism should be implemented through a hybrid MPI and OpenMP
approach.

R3. Computational load must be evenly balanced across all processes.

R4. MPI communication must be optimized for large-scale execution.

R5. I/O operations should be distributed to avoid bottlenecks.

R6. Memory usage per node must be uniform.

R7. Hardware failures must be detected promptly.

R8. Performance metrics and various statistical information should be collected
appropriately.

3

For each requirement, we itemized concrete approaches and their
associated verification aspects.

Focusing on the optimization of MPI communication, we found that
efficient MPI communication on Fugaku’s Tofu-D interconnect needs
verification of the following aspects:

whether the communication patterns are consistent with the process mapping;
whether appropriate collective communication algorithms are employed for MPI
collective operations;
whether the communication mode achieves a balance between performance
and memory usage; and
whether point-to-point communications are performed without unexpected
messages.

Over the past two years, RIST has supported eight projects awarded
full-system execution. By applying the approaches summarized in
Table 1, we have supported the successful completion of these full-
system executions.

4

Table 1: RIST support for eight projects awarded full-
system execution during 2024 - 2025

5

Project Name Project ID Date Approaches of Support

Examination of effects from variety of
libraries and compilers in huge-scale
parallel simulation of eigenvalue
problems

hp230114 February,
2024

R4. Optimized MPI communication
- Balancing performance and memory usage
- Reducing unexpected messages

R6. Uniform memory usage per node
- Allocating non-uniform numbers of processes per node

hp230532 July,
2024

Huge-scale molecular dynamics
simulation of ultrasonic cavitation hp240112 February,

2025

R4. Optimized MPI communication
- Balancing performance and memory usage
- Proper process mapping
- Selecting appropriate collective communication algorithms

Galaxy simulation with AI
hp240219 February,

2025 R4. Optimized MPI communication
- Proper process mapping
- Selecting appropriate collective communication algorithmshp250226 July,

2025

Direct numerical simulation of turbulent
channel flow at world’s largest Reynolds
number using full-nodes on Fugaku

hp240171 February,
2025

R4. Optimized MPI communication
- Proper process mapping by FugakuNodeMappingTools
- Selecting appropriate collective communication algorithms

R5. Distributed I/O operations
- I/O striping and LLIO usage to maintain peak performance

Microscopic mouse whole cortex
simulation

hp240214 February,
2025

R2. Hybrid MPI and OpenMP parallelism
- Improving SIMD operations

R4. Optimized MPI communication
- Selecting appropriate collective communication algorithms

R5. Distributed I/O operations
- Staging and LLIO usage to avoid I/O bottlenecks

hp250231 July,
2025

Node Mapping Tools

Through our support for project hp240171 [2], we found that the cost of
MPI_Alltoall communication is dominant and requires optimization.

To address this issue, we developed the FugakuNodeMappingTools to
generate optimal process mappings that confine MPI_Alltoall
operations within neighboring Tofu units.

FugakuNodeMappingTools automatically generates efficient process
mappings based on the communication characteristics of Fugaku’s
Tofu-D interconnect.

It is designed for three-dimensional applications in which two
dimensions (XY) involve intensive communication and the remaining
dimension (Z) involves relatively sparse communication.

The creation of a rank map file consists of the following two steps:
1. Retrieving the default process placement using dump_data.f90
2. Generating the rank map file using main_tofu.f90

6

1. Retrieving the default process placement using
dump_data.f90

A job is executed without using a rank map file to obtain the
default process mapping.

By using the FJMPI_TOPOLOGY_GET_COORDS subroutine
provided by FJMPI [4], the following information is obtained:

A) Logical node coordinates (XL, YL, ZL)

B) Tofu coordinates of the node (physical coordinates) (XP, YP,
ZP, AP, BP, CP)

C) Tofu coordinates of the node (relative coordinates with respect
to process #0) (XR, YR, ZR, AR, BR, CR)

2. Generating the rank map file using main_tofu.f90
This program does not require job execution and runs on the login
node.

This program generates a rank map file by taking as input the
default process placement obtained by dump_data.f90 and the
desired process topology specified by the following parameters.

7

Parameter file Parameters Example Description

shape.txt shape_x, shape_y, shape_z 20 12 24 3D shape of the application

nap.txt nap 1 Number of processes per node

xy_z.txt nprocs_xy, nprocs_z 48 120 Size of the XY and Z dimension of the application

inc_xyz.txt inc_x, inc_y, inc_z 2 2 1 Size of rectangular region along the XY dimension (in Tofu units).

dir.txt dir zyx Routing priority for the Z dimension of the application

#1_node #2_dim #3_X #4_Y #5_Z
5760 3 20 12 24

0 0 0 0 17 12 4 0 0 0 0 0 0 0 0 0
1 1 0 0 18 12 4 0 0 0 1 0 0 0 0 0
2 2 0 0 19 12 4 0 0 0 2 0 0 0 0 0

...
5757 17 11 23 19 12 4 1 1 1 2 0 0 1 1 1
5758 18 11 23 18 12 4 1 1 1 1 0 0 1 1 1
5759 19 11 23 17 12 4 1 1 1 0 0 0 1 1 1

#!/bin/sh -l
#PJM -L node=20x12x24:torus:strict
#PJM -L elapse=0:05:00
#PJM -L rscunit=rscunit_ft01
#PJM -L rscgrp=large
#PJM -L proc-core=unlimited
#PJM --mpi "proc=5760"
#PJM --mpi "rank-map-bynode"
#PJM --mpi "assign-online-node"
#PJM -g xxxxxxx
#PJM -S
#
llio_transfer ./dump_data.exe
###
mpiexec ../dump_data.exe -Wl,-T

Example of dump_data job script:

Example of dump_data output:

echo 20 12 24 > shape.txt
echo 1 > nap.txt
echo 48 120 > xy_z.txt
echo 2 2 1 > inc_xyz.txt
echo zyx > dir.txt
../a.tofu > output_20x12x24_1_48x120_2x2x1_yxz.txt

Example of main_tofu execution:

8

Example of the generated rank map file
Rank map file generation policy

1. For the dimensions with intensive communication (XY), a block of four Tofu units (shape of 2 x 2 x 1) is allocated.

For example, when an all-to-all communication is performed within this block, the use of a high-performance MPI
collective communication algorithm is ensured.

2. For the dimension with sparse communication (Z), processes are assigned to adjacent nodes so as to minimize
communication distance (i.e., the number of hops) as much as possible.

The routing priority for the application’s Z dimension is Z > Y > X.

Adjacent communication along the Z dimension requires one hop.

If no adjacent node exists along the Z axis, communication is redirected to the Y axis, resulting in two hops.

If no adjacent node exists along the Y axis either, communication is redirected to the X axis, which also results in
two hops.

Z

Y

X
1 tofu unit
(12 nodes)

1 tofu unit
(12 nodes)

1 tofu unit
(12 nodes)

1 tofu unit
(12 nodes)

Z

Y

X

Z

Parameters Example

shape_x, shape_y, shape_z 20 12 6

nap 1

nprocs_xy, nprocs_z 48 30

inc_x, inc_y, inc_z 2 2 1

dir zyx

Node Mapping Results

The use of process mappings generated by FugakuNodeMappingTools
ensured the use of appropriate collective communication algorithms for
MPI_Alltoall;
eliminated interference from other MPI_Alltoall operations; and
assigned processes to adjacent nodes to minimize the communication distance.

As a result, this approach achieved performance improvements of 3.0
to 5.5 times [2].

The tool for generating rank map files is publicly available as
FugakuNodeMappingTools [3].

9

Conclusions and Future Work
We have provided support for full-system executions on Fugaku and
established several methodologies during this process.

In this poster, we highlighted the rank mapping tool as one example of
optimization methodologies. We developed FugakuNodeMappingTools
and achieved performance improvements of 3.0 to 5.5 times by
generating optimal process mappings.

In addition, we are also developing additional methodologies, including
approaches for ensuring uniform memory usage per node.

10

ACKNOWLEDGMENTS
• This research used computational resources of the supercomputer Fugaku provided by the RIKEN Center for

Computational Science.
• The development of FugakuNodeMappingTools was carried out as part of the Advanced User Support Program for

the HPCI System Research Project (Project ID: hp230138 and hp240171).

REFERENCES
[1] HPCI Awarded Projects: https://www.hpci-office.jp/en/using_hpci/awarding_results
[2] Project Report: https://www.hpci-office.jp/output/hp230138/outcome.pdf
[3] FugakuNodeMappingTools: https://github.com/rist-kobe/FugakuNodeMappingTools
[4] Fujitsu Software Technical Computing Suite V4.0L20 Development Studio MPI User's Guide: https://www.r-

ccs.riken.jp/fugaku/docs/manual/en/lang/mpi/j2ul-2565-01enz0.pdf

