SCA/HPCAsia 2026 .
January 26-29, 2026, Osaka, Japan ‘:QJ R’ST

User Support for Full-System Execution
on the Supercomputer Fugaku

Naoki Sueyasu, Tatsunobu Kokubo,
Yukihiro Ota, Masato Matsui, Hiroshi Kobayashi,
Yoshihisa Shizawa, Asako Terasawa, Eiji Tomiyama,
Gilles Gouaillardet, Daisuke Matsuoka

Research Organization for Information Science and Technology (RIST) ,
Kobe, Japan

Background and Motivation

® The Research Organization for Information Science and Technology
(RIST) provides support for users of the High Performance Computing
Infrastructure (HPCI) in Japan.

® As part of the support, RIST assists with large-scale executions on the
full system of the supercomputer Fugaku. Fugaku is a massively
parallel system consisting of 158976 nodes, each equipped with a
single A64FX CPU based on the Arm architecture.

® A full-system execution refers to an event in which nearly all resources
of Fugaku are allocated to a single project to run extremely large-scale
jobs.

® These events are typically scheduled twice a year. Over the past two
years, RIST has supported 8 of the 13 projects awarded for the full-
system execution [1].

Additional Requirements Specific to Full-
System Executions

® |n addition to challenges associated with conventional jobs involving
thousands of processes, full-system executions impose additional
requirements specific to the extreme-scale computing:

R1. The application must exhibit extremely high inherent parallelism.

R2. Parallelism should be implemented through a hybrid MPIl and OpenMP
approach.

R3. Computational load must be evenly balanced across all processes.
R4. MPI communication must be optimized for large-scale execution.
R5. 1/0 operations should be distributed to avoid bottlenecks.

R6. Memory usage per node must be uniform.

R7. Hardware failures must be detected promptly.

R8. Performance metrics and various statistical information should be collected
appropriately.

® For each requirement, we itemized concrete approaches and their
associated verification aspects.

® Focusing on the optimization of MPl communication, we found that
efficient MPl communication on Fugaku’s Tofu-D interconnect needs
verification of the following aspects:

v whether the communication patterns are consistent with the process mapping;

v whether appropriate collective communication algorithms are employed for MPI
collective operations;

v" whether the communication mode achieves a balance between performance
and memory usage; and

v" whether point-to-point communications are performed without unexpected
messages.

® Over the past two years, RIST has supported eight projects awarded
full-system execution. By applying the approaches summarized in
Table 1, we have supported the successful completion of these full-
system executions.

Table 1: RIST support for eight projects awarded full-
system execution during 2024 - 2025

Project Name Project ID Date Approaches of Support
o _ February, R4. Optimized MPI communication
Examination of effects from varlety of hp2301 14 2024 = Balancing performance and memory usage
libraries and compilers in huge-scale - Reducing unexpected messages
parallel simulation of eigenvalue
problems hp230532 July, R6. Uniform memory usage per node
2024 - Allocating non-uniform numbers of processes per node

R4. Optimized MPI communication

Huge-scale molecular dynamics February, - Balancing performance and memory usage
: : : I hp240112 :
simulation of ultrasonic cavitation 2025 - Proper process mapping
- Selecting appropriate collective communication algorithms
February,
hp240219 2025 U R4. Optimized MPI communication
Galaxy simulation with Al - Proper process mapping
hp250226 :‘nglzys - Selecting appropriate collective communication algorithms
R4. Optimized MPI communication
Direct numerical simulation of turbulent February, - Selecting abpropriate caleciive commenication sigortms
channel flow at world’s largest Reynolds hp240171 2025 Y, g approp 9
number using full-nodes on Fugaku R5. Distributed 1/O operations
- 1/0 striping and LLIO usage to maintain peak performance
R2. Hybrid MPI and OpenMP parallelism
hp240214 February, - Improving SIMD operations
2025
Microscopic mouse whole cortex R4. Optimized MPI communication
simulation - Selecting appropriate collective communication algorithms
July,
hp250231 202y5 R5. Distributed 1/0 operations

- Staging and LLIO usage to avoid I/O bottlenecks

Node Mapping Tools

® Through our support for project hp240171 [2], we found that the cost of
MPI_Alltoall communication is dominant and requires optimization.

® To address this issue, we developed the FugakuNodeMappingTools to
generate optimal process mappings that confine MPI_Alltoall
operations within neighboring Tofu units.

® FugakuNodeMappingTools automatically generates efficient process
mappings based on the communication characteristics of Fugaku'’s
Tofu-D interconnect.

® |t is designed for three-dimensional applications in which two
dimensions (XY) involve intensive communication and the remaining
dimension (Z) involves relatively sparse communication.

® The creation of a rank map file consists of the following two steps:
1. Retrieving the default process placement using dump_data.f90
2. Generating the rank map file using main_tofu.f90

. . . E le of d data job script:
1. Retrieving the default process placement using j(ar:]peo e
dump_data.fo0 ThE s
® Ajob is executed without using a rank map file to obtain the A ol
default process mapping. e e ynode”
#PJM --mpi "assign-online-node"
® By using the FJMPI_TOPOLOGY_GET_COORDS subroutine TN R
provided by FJMPI [4], the following information is obtained: e e s
A) Logical node coordinates (XL, YL, ZL) rpiexee /o deta-exe LT
B) Tofu coordinates of the node (physical coordinates) (XP, YP,
Zp, AP, BP, CP) Example of dump_data output:
#1_node #2_dim #3 X #4_Y #5 Z
C) Tofu coordinates of the node (relative coordinates with respect 7 0 0 o 1712 4 06 00 @ 0 0 0 o o
to process #0) (XR, YR, ZR, AR, BR, CR) 2 2 6 6 1912 4 0 00 20 0 0 0 o
2. Generating the rank map file using main_tofu.f90 Te M b wom o4 oA ad 600 oa a
® This program does not require job execution and runs on the login
node. Example of main_tofu execution:
® This program generates a rank map file by taking as input the echo 20 12 24 > shape.txt
default process placement obtained by dump_data.f90 and the S S e
desired process topology specified by the following parameters. e > i
../a.tofu > output_20x12x24_1 48x120_2x2x1_yxz.txt
Parameter file Parameters Example Description
shape.txt shape_x, shape_y, shape z 201224 3D shape of the application
nap.txt nap 1 Number of processes per node
xy_z.txt NProcs_xy, Nprocs_z 48 120 Size of the XY and Z dimension of the application
inc_xyz.txt inc_x, inc_y, inc_z 221 Size of rectangular region along the XY dimension (in Tofu units).
dir.txt dir Zyx Routing priority for the Z dimension of the application
/
® Example of the generated rank map file
® Rank map file generation policy
1. For the dimensions with intensive communication (XY), a block of four Tofu units (shape of 2 x 2 x 1) is allocated.
» For example, when an all-to-all communication is performed within this block, the use of a high-performance MPI
collective communication algorithm is ensured.
2. For the dimension with sparse communication (Z), processes are assigned to adjacent nodes so as to minimize
communication distance (i.e., the number of hops) as much as possible.
» The routing priority for the application’s Z dimensionis Z>Y > X.
» Adjacent communication along the Z dimension requires one hop.
» If no adjacent node exists along the Z axis, communication is redirected to the Y axis, resulting in two hops.
» If no adjacent node exists along the Y axis either, communication is redirected to the X axis, which also results in
Y two hops.
’ ----------- ‘
S Y . 2 . . 2/ . ,
I \ 5 6 17 18 29
| |
| _ |
1| 1 tofu unit | | 1 tofu unit I 4 7 16 19 28
]| (12 nodes) || (12 nodes) ! 7 7 j
I I /
' -I—PI 3 8 15 20 27
1 | 1tofuunit 1 tofu unit 1 X X
I | (12 nodes) | | (12 nodes) |
\ [0 1 12 23 24
\ 4
‘i".I ----------- ll“"
Parameters Example 1 1 0 1 3 22 25
shape_x, shape_y, shape z 20126 Vl
nap 1 ’- = \ —
Nprocs_xy, Nprocs_z 48 30 : 2 : 9 1 4 21 26
inc_x, inc_y, inc_z 221 Z | |
dir ZyX \ I I .- ' 8
Node Mapping Results
® The use of process mappings generated by FugakuNodeMappingTools
v ensured the use of appropriate collective communication algorithms for
MPI_Alltoall;
v' eliminated interference from other MPI_Alltoall operations; and
v assigned processes to adjacent nodes to minimize the communication distance.
® As a result, this approach achieved performance improvements of 3.0
to 5.5 times [2].
® The tool for generating rank map files is publicly available as
FugakuNodeMappingTools [3].

Conclusions and Future Work

® \We have provided support for full-system executions on Fugaku and
established several methodologies during this process.

® In this poster, we highlighted the rank mapping tool as one example of
optimization methodologies. We developed FugakuNodeMappingTools
and achieved performance improvements of 3.0 to 5.5 times by
generating optimal process mappings.

® |n addition, we are also developing additional methodologies, including
approaches for ensuring uniform memory usage per node.

ACKNOWLEDGMENTS
» This research used computational resources of the supercomputer Fugaku provided by the RIKEN Center for
Computational Science.
» The development of FugakuNodeMappingTools was carried out as part of the Advanced User Support Program for
the HPCI System Research Project (Project ID: hp230138 and hp240171).

REFERENCES
[11 HPCI Awarded Projects: https://www.hpci-office.jp/en/using _hpci/awarding_results
[2] Project Report: https://www.hpci-office.jp/output/hp230138/outcome.pdf
[3] FugakuNodeMappingTools: https://github.com/rist-kobe/FugakuNodeMappingTools
[4] Fujitsu Software Technical Computing Suite V4.0L20 Development Studio MPI User's Guide: https://www.r-
ccs.riken.jp/fugaku/docs/manual/en/lang/mpi/j2ul-2565-01enz0.pdf

10

