
Introduction

• Motivation: High-fidelity CFD/FEM is accurate but expensive for large 

sweeps and 3D cases.

• Background: PINNs solve PDEs by enforcing physics in the loss, 

reducing reliance on dense labels.

• Challenge: Training is unstable/slow near boundaries and interfaces due 

to loss imbalance and continuity constraints.

• Goal: Improve stability and time-to-accuracy while keeping a clear path 

to HPC scaling.

• Contribution: DHB-XPINN = XPINN + data-anchored 

boundary/interface loss (physics residual in the interior).

• HPC angle: Subdomains can train in parallel (multi-GPU/node) with 

lightweight interface synchronization.

Methods
• Governing Equations 
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• Hybrid Boundary Form

ො𝑢 = 𝑃𝑢 + 𝐷𝑢𝑢, ො𝑣 = 𝑃𝑣 + 𝐷𝑣𝑣, ො𝑝 = 𝑃𝑝 + 𝐷𝑝𝑝

Here 𝑢, 𝑣, 𝑝 denote primary-network outputs not the physical ground 

truth.

• Final objective
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+ 𝜔𝑖𝑓𝐿𝐼𝐹 + 𝜔𝑑𝐿𝐷𝐴𝑇𝐴,  ො𝑞 = ( ො𝑢, ො𝑣, ො𝑝)

Results
Case 1: Inlet 𝑢 = 1, 𝑣 = 0; Outlet 𝑝 = 0; Walls no-slip Case 2: Inlet 𝑢 = 0.5, 𝑣 = 0; Outlet: 𝑝 = 0; Walls no-slip

Training time: 

• 2D: 2–4 h on [GPU/CPU model]. 

• 3D: projected 8–12 h (scaling study ongoing)

Speed up: 

• Up to ~10 × vs PINN (same settings, same hardware).

Discussion Future Work

References 

• The Hybrid Boundary form separates a boundary/IC component 𝑃 

from a distance-weighted correction 𝐷 ∙ 𝐻, improving stability near 

boundaries.

• XPINN domain decomposition increases scalability, but accuracy 

depends on strong interface coupling to avoid “seams.”

• Sparse boundary/interface data anchors difficult regions and 

improves time-to-accuracy versus purely physics-only training.

• Key sensitivities remain in loss-weight tuning, partition choice, and 

sampling density near sharp gradients.

• Apply to external aerodynamics: NACA 0012 (2D) → ONERA M6 (3D).

• Extend to compressible flows and add stronger interface constraints (e.g., 

flux/gradient continuity).

• Use adaptive sampling/domain refinement near interfaces and high-

gradient regions.

• Implement multi-GPU/node subdomain-parallel training and report 

scaling and wall-time results.
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Fig 1:Velocity distributions for the 

flow around a cylinder

Fig 2:Residuals compared to 

GT  (case 1)
Fig 4: Velocity distributions for Case 2 

Fig 3:Case 1 Relative L2 Error
Fig 6:Case 2 Relative L2 Error

Fig 5:Residuals compared to GT (case 2) 
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