Background

Quantum Machine Learning (QML) is a relatively recent field that aims to study the possible
ways to combine Machine Learning methods with Quantum Computing. One such way with
Immediate applications consists in using quantum circuits as parts of ML algorithms for
classical (hon-quantum) data. In this context, the goal is to use the higher expressivity of
quantum circuits, encoding the data in high-dimensionality Hilbert spaces, to explore more
efficiently the parameter space and improve the quality of the final model. Although
promising for some applications, QML is hindered by current Quantum Processing Units
(QPUs) being very rare and costly to use, as well as having low throughput and no usable
RAM equivalent. In practice, this means that Variational Quantum Algorithms (VQA) [1],
which optimize the parameters of a quantum circuits in a similar way as their classical
counterparts, require too many quantum circuit evaluations to be trainable on real
hardware, even for very small datasets. In fact, to the best of our knowledge, no current
QML method can be trained on real hardware for non-trivial tasks. As such, these methods
remain confined to simulators, which limits their ability to generalize.

Goal

Find a Quantum Machine Learning algorithm which can realistically
be fully trained and evaluated on real quantum hardware

Methods - algorithm

Post-Variational Quantum Neural Networks

Post-Variational Quantum Neural Networks (QNN) are a recent QML algorithm [2]. The core
Idea is to predefine a set of qguantum circuits, apply them to each sample of the dataset,
and use the measurements from these circuits as features of the new transformed dataset.
The final model (a Multi-Layer Perceptron) is then trained classically on this dataset.
Although this method was originally developed to solve the issue of barren plateaus that
occur when training VQA, it also has the benefit of requiring fewer circuits evaluations.
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Two variants:

* Observables: use the encoding circuit only + measure subsets of qubits in different Pauli
bases (X, Y, Z)

* Ansatze: use the encoding+ansatz circuit, add a subset of Ry rotations (fixed value),
measure top qubit

Results - runtime
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where n is the number of training samples, L is the locality, and q is the number of qubits (=
Image pixels). Locality is a parameter which is defined differently for each variant:

* Forthe observables variant, it is the size of each observed qubit subset

* Forthe ansatze variant, it is the number of parameterized gates set to a non-zero rotation
This parameter controls the complexity of the model, but more complex models require
more computations, since all combinations are used as features.

As an illustration, the table here shows the locality observables | ansatze
number of quantum circuit evaluations for 1 24 33
egch trall.wlng sample erthe two va.rlants 9 276 481
with varying locality, with g = 8 qubits.

3 1788 4481

Runtime in practice — IBM-Kobe

Since the quantum circuits use from 8 to 28 qubits, and there are 156 qubits available, itis
possible to use circuit stacking in order to reduce the QPU load by computing fewer but
wider circuits. Since QPU time is a scarce resource and a lot of time is spent waiting in
queue or in pre-/post-processing, this helps reduce significantly the total runtime.

n qubits | Median | Minimum | Maximum
Median/maximum/minimum total ans-8 38 212 18.7 95 3
runtime (in seconds) for circuits used obs-8 24 14.6 13.2 4432
in different configurations and using obs-16 48 19.1 17.3 86.3
various numbers of qubits obs-28 84 24.6 22.6 33.6
obs-8-loc-2 106 20.5 16.7 1240

Using circuit stacking (with a maximum of 120 qubits), the total model training time ranged
from 3.5 hours to 20 hours, which makes it practically feasible on real quantum hardware.
As a comparison, fully training a VQA in similar conditions would require an estimate of
over 10 days of pure quantum computation time (excluding time in queue, circuit
preparation, results processing).

Results —- model quality

Although the main goal was to show that Post-Variational QNNs could be fully trained on
real QPUs, it is also interesting to look at the quality of the models that are learned. To that
intent, we present below the average (over 10 runs with different initial states) and standard
deviation for the accuracy and area under ROC curve, on both the training and the test sets
(random split). The configuration names contain the parameters values. For example, “obs-
8-loc-2” refers to the observables variant with images downscaled to 8x8 pixels and locality
setto 2. All models are run on IBM-Kobe, except “variational” which is the baseline VQA run
on a noiseless simulator, and “obs-8-reimei” which is run on the ion-trap QPU Reimei.

Methods - workflow and data

Hardware used:

* CPU: supercomputer Fugaku
* QPU: IBM Heron r2 156-qubit superconducting device “IBM-Kobe”
* QPU: Quantinuum H1 20-qubit ion-trap device “Reimei”
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Dataset and experimental setup

We used the BreastMNIST dataset from the
MedMNIST [3] collection. It is a binary classification
task on a set of 780 grey-scale breast tumors
Images with 28x28 pixels. The class distribution

Is 73/27. \We experimented with different localities,
and with versions of the images downscaled to

8x8 and 16x16 pixels
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train test train test
variational 0.54 + 0.03 0.521 + 0.065 variational 0.495 + 0.016 | 0.542 + 0.031
ans-38 0.71 = 0.02 0.74 + 0.034 ans-38 0.505 + 0.01 0.539 + 0.023
ans-16 0.721 = 0.005 0.755 = 0.002 ans-16 0.485 + 0.01 0.522 + 0.026
obs-8 0.725 + 0.004 0.756 + 0.005 obs-8 0.544 + 0.102 | 0.559 + 0.111
obs-8-reimei | 0.724 + 0.001 | 0.754 + 0.013 obs-8-reimei | 0.525 + 0.075 | 0.532 + 0.106
obs-16 0.739 + 0.017 0.765 + 0.014 obs-16 0.678 + 0.068 | 0.679 + 0.054
obs-28 0.73 + 0.031 0.737 + 0.046 obs-28 0.627 + 0.119 | 0.572 + 0.099
obs-8-loc-2 0.756 = 0.011 0.768 + 0.019 obs-8-loc-2 0.718 £ 0.025 | 0.689 + 0.014
obs-16-loc-2 | 0.788 = 0.018 | 0.787 + 0.012 obs-16-loc-2 | 0.777 £ 0.035 | 0.71 + 0.017
obs-28-loc-2 | 0.877 £ 0.072 | 0.758 + 0.011 obs-28-loc-2 | 0.909 + 0.075 | 0.681 + 0.021
obs-8-loc-3 0.756 = 0.017 0.772 + 0.022 obs-8-loc-3 0.721 + 0.034 | 0.679 = 0.015

Main observations

We could only run one configuration on Reimei due to availability constraints, but the

results are similar to those obtained on IBM-Kobe (see “obs-8” and “obs-8-reimei”), with

the difference being well within the standard deviation
We only ran two configurations of the ansatze variant since the results were not
promising after “ans-16” and it is more costly to run than the other variant

Overall, the observables variant with locality 2 running on 16x16 or 28x28 pixels images
gave the best results, with the second one showing signs of overfitting.
Going from locality 1 to 2 led to significantly better models, but using locality 3 does not

seem to improve the results further despite the much larger number of features it uses

>

Perspectives

Try feature selection to further reduce the number of quantum circuits evaluations
required, aiming to only compute the useful features if possible
» Run experiments on larger and different datasets
» Compare with “state-of-the-art” QML methods on the standard train/test split
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