
Background

Quantum Machine Learning (QML) is a relatively recent field that aims to study the possible 
ways to combine Machine Learning methods with Quantum Computing. One such way with 
immediate applications consists in using quantum circuits as parts of ML algorithms for 
classical (non-quantum) data. In this context, the goal is to use the higher expressivity of 
quantum circuits, encoding the data in high-dimensionality Hilbert spaces, to explore more 
efficiently the parameter space and improve the quality of the final model. Although 
promising for some applications, QML is hindered by current Quantum Processing Units 
(QPUs) being very rare and costly to use, as well as having low throughput and no usable 
RAM equivalent. In practice, this means that Variational Quantum Algorithms (VQA) [1], 
which optimize the parameters of a quantum circuits in a similar way as their classical 
counterparts, require too many quantum circuit evaluations to be trainable on real 
hardware, even for very small datasets. In fact, to the best of our knowledge, no current 
QML method can be trained on real hardware for non-trivial tasks. As such, these methods 
remain confined to simulators, which limits their ability to generalize.

Results – runtime

Number of quantum circuit evaluations for Post-Variational QNNs

  Observables variant        Ansatze variant

where n is the number of training samples, L is the locality, and q is the number of qubits (= 
image pixels). Locality is a parameter which is defined differently for each variant:
• For the observables variant, it is the size of each observed qubit subset
• For the ansatze variant, it is the number of parameterized gates set to a non-zero rotation
This parameter controls the complexity of the model, but more complex models require 
more computations, since all combinations are used as features.

As an illustration, the table here shows the
number of quantum circuit evaluations for
each training sample for the two variants 
with varying locality, with q = 8 qubits.

Runtime in practice – IBM-Kobe

Since the quantum circuits use from 8 to 28 qubits, and there are 156 qubits available, it is 
possible to use circuit stacking in order to reduce the QPU load by computing fewer but 
wider circuits. Since QPU time is a scarce resource and a lot of time is spent waiting in 
queue or in pre-/post-processing, this helps reduce significantly the total runtime.

Median/maximum/minimum total
runtime (in seconds) for circuits used 
in different configurations and using
various numbers of qubits

Using circuit stacking (with a maximum of 120 qubits), the total model training time ranged 
from 3.5 hours to 20 hours, which makes it practically feasible on real quantum hardware.
As a comparison, fully training a VQA in similar conditions would require an estimate of 
over 10 days of pure quantum computation time (excluding time in queue, circuit 
preparation, results processing).

Methods – algorithm

Post-Variational Quantum Neural Networks

Post-Variational Quantum Neural Networks (QNN) are a recent QML algorithm [2]. The core 
idea is to predefine a set of quantum circuits, apply them to each sample of the dataset, 
and use the measurements from these circuits as features of the new transformed dataset. 
The final model (a Multi-Layer Perceptron) is then trained classically on this dataset. 
Although this method was originally developed to solve the issue of barren plateaus that 
occur when training VQA, it also has the benefit of requiring fewer circuits evaluations.

Selecting the quantum circuits for feature mapping

Two variants:
• Observables: use the encoding circuit only + measure subsets of qubits in different Pauli 

bases (X, Y, Z)
• Ansatze: use the encoding+ansätz circuit, add a subset of Ry rotations (fixed value), 

measure top qubit

Methods – workflow and data

Hardware used:
• CPU: supercomputer Fugaku
• QPU: IBM Heron r2 156-qubit superconducting device “IBM-Kobe”
• QPU: Quantinuum H1 20-qubit ion-trap device “Reimei”

Dataset and experimental setup       Two images from the training 
We used the BreastMNIST dataset from the      set of BreastMNIST
MedMNIST [3] collection. It is a binary classification   (left: benign; right, malignant)
task on a set of 780 grey-scale breast tumors 
images with 28x28 pixels. The class distribution 
is 73/27. We experimented with different localities, 
and with versions of the images downscaled to 
8x8 and 16x16 pixels

Results – model quality
Although the main goal was to show that Post-Variational QNNs could be fully trained on 
real QPUs, it is also interesting to look at the quality of the models that are learned. To that 
intent, we present below the average (over 10 runs with different initial states) and standard 
deviation for the accuracy and area under ROC curve, on both the training and the test sets 
(random split). The configuration names contain the parameters values. For example, “obs-
8-loc-2” refers to the observables variant with images downscaled to 8x8 pixels and locality 
set to 2. All models are run on IBM-Kobe, except “variational” which is the baseline VQA run 
on a noiseless simulator, and “obs-8-reimei” which is run on the ion-trap QPU Reimei.

Main observations

• We could only run one configuration on Reimei due to availability constraints, but the 
results are similar to those obtained on IBM-Kobe (see “obs-8” and “obs-8-reimei”), with 
the difference being well within the standard deviation

• We only ran two configurations of the ansatze variant since the results were not 
promising after “ans-16” and it is more costly to run than the other variant

• Overall, the observables variant with locality 2 running on 16x16 or 28x28 pixels images 
gave the best results, with the second one showing signs of overfitting.

• Going from locality 1 to 2 led to significantly better models, but using locality 3 does not 
seem to improve the results further despite the much larger number of features it uses

Perspectives
➢ Try feature selection to further reduce the number of quantum circuits evaluations 

required, aiming to only compute the useful features if possible
➢ Run experiments on larger and different datasets
➢ Compare with “state-of-the-art” QML methods on the standard train/test split
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Goal

Find a Quantum Machine Learning algorithm which can realistically 
be fully trained and evaluated on real quantum hardware
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