
Background

Quantum Machine Learning (QML) is a relatively recent field that aims to study the possible
ways to combine Machine Learning methods with Quantum Computing. One such way with
immediate applications consists in using quantum circuits as parts of ML algorithms for
classical (non-quantum) data. In this context, the goal is to use the higher expressivity of
quantum circuits, encoding the data in high-dimensionality Hilbert spaces, to explore more
efficiently the parameter space and improve the quality of the final model. Although
promising for some applications, QML is hindered by current Quantum Processing Units
(QPUs) being very rare and costly to use, as well as having low throughput and no usable
RAM equivalent. In practice, this means that Variational Quantum Algorithms (VQA) [1],
which optimize the parameters of a quantum circuits in a similar way as their classical
counterparts, require too many quantum circuit evaluations to be trainable on real
hardware, even for very small datasets. In fact, to the best of our knowledge, no current
QML method can be trained on real hardware for non-trivial tasks. As such, these methods
remain confined to simulators, which limits their ability to generalize.

Results – runtime

Number of quantum circuit evaluations for Post-Variational QNNs

 Observables variant Ansatze variant

where n is the number of training samples, L is the locality, and q is the number of qubits (=
image pixels). Locality is a parameter which is defined differently for each variant:
• For the observables variant, it is the size of each observed qubit subset
• For the ansatze variant, it is the number of parameterized gates set to a non-zero rotation
This parameter controls the complexity of the model, but more complex models require
more computations, since all combinations are used as features.

As an illustration, the table here shows the
number of quantum circuit evaluations for
each training sample for the two variants
with varying locality, with q = 8 qubits.

Runtime in practice – IBM-Kobe

Since the quantum circuits use from 8 to 28 qubits, and there are 156 qubits available, it is
possible to use circuit stacking in order to reduce the QPU load by computing fewer but
wider circuits. Since QPU time is a scarce resource and a lot of time is spent waiting in
queue or in pre-/post-processing, this helps reduce significantly the total runtime.

Median/maximum/minimum total
runtime (in seconds) for circuits used
in different configurations and using
various numbers of qubits

Using circuit stacking (with a maximum of 120 qubits), the total model training time ranged
from 3.5 hours to 20 hours, which makes it practically feasible on real quantum hardware.
As a comparison, fully training a VQA in similar conditions would require an estimate of
over 10 days of pure quantum computation time (excluding time in queue, circuit
preparation, results processing).

Methods – algorithm

Post-Variational Quantum Neural Networks

Post-Variational Quantum Neural Networks (QNN) are a recent QML algorithm [2]. The core
idea is to predefine a set of quantum circuits, apply them to each sample of the dataset,
and use the measurements from these circuits as features of the new transformed dataset.
The final model (a Multi-Layer Perceptron) is then trained classically on this dataset.
Although this method was originally developed to solve the issue of barren plateaus that
occur when training VQA, it also has the benefit of requiring fewer circuits evaluations.

Selecting the quantum circuits for feature mapping

Two variants:
• Observables: use the encoding circuit only + measure subsets of qubits in different Pauli

bases (X, Y, Z)
• Ansatze: use the encoding+ansätz circuit, add a subset of Ry rotations (fixed value),

measure top qubit

Methods – workflow and data

Hardware used:
• CPU: supercomputer Fugaku
• QPU: IBM Heron r2 156-qubit superconducting device “IBM-Kobe”
• QPU: Quantinuum H1 20-qubit ion-trap device “Reimei”

Dataset and experimental setup Two images from the training
We used the BreastMNIST dataset from the set of BreastMNIST
MedMNIST [3] collection. It is a binary classification (left: benign; right, malignant)
task on a set of 780 grey-scale breast tumors
images with 28x28 pixels. The class distribution
is 73/27. We experimented with different localities,
and with versions of the images downscaled to
8x8 and 16x16 pixels

Results – model quality
Although the main goal was to show that Post-Variational QNNs could be fully trained on
real QPUs, it is also interesting to look at the quality of the models that are learned. To that
intent, we present below the average (over 10 runs with different initial states) and standard
deviation for the accuracy and area under ROC curve, on both the training and the test sets
(random split). The configuration names contain the parameters values. For example, “obs-
8-loc-2” refers to the observables variant with images downscaled to 8x8 pixels and locality
set to 2. All models are run on IBM-Kobe, except “variational” which is the baseline VQA run
on a noiseless simulator, and “obs-8-reimei” which is run on the ion-trap QPU Reimei.

Main observations

• We could only run one configuration on Reimei due to availability constraints, but the
results are similar to those obtained on IBM-Kobe (see “obs-8” and “obs-8-reimei”), with
the difference being well within the standard deviation

• We only ran two configurations of the ansatze variant since the results were not
promising after “ans-16” and it is more costly to run than the other variant

• Overall, the observables variant with locality 2 running on 16x16 or 28x28 pixels images
gave the best results, with the second one showing signs of overfitting.

• Going from locality 1 to 2 led to significantly better models, but using locality 3 does not
seem to improve the results further despite the much larger number of features it uses

Perspectives
➢ Try feature selection to further reduce the number of quantum circuits evaluations

required, aiming to only compute the useful features if possible
➢ Run experiments on larger and different datasets
➢ Compare with “state-of-the-art” QML methods on the standard train/test split

Acknowledgement
This poster is based on results obtained from a project, JPNP20017, commissioned by the
New Energy and Industrial Technology Development Organization (NEDO).

Data
Quantum

data

Parameterized
quantum model

Measurement

Optimizer

Quantum
embedding

Learned model

Data
Quantum

data
Quantum
embedding

Fixed set of quantum
circuits

Set of measurements

New
features

Learned model Optimizer

Variational Post-variational

classical

quantum

Encoding Ansatz

build and send circuits

gather results when finished

Classical ML on
QC results

Trained model
/ predictions

HPC job

(results saving + restart system)

QPUs

Goal

Find a Quantum Machine Learning algorithm which can realistically
be fully trained and evaluated on real quantum hardware

CPU

References
[1] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke
Mitarai, Xiao Yuan, Lukasz Cincio, et al. 2021. Variational quantum algorithms. Nature Reviews Physics 3, 9 (2021), 625–644.
[2] Po-Wei Huang and Patrick Rebentrost. 2023. Post-variational quantum neural networks. arXiv preprint arXiv:2307.10560
(2023).
[3] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and BingbingNi.2023. MedMNISTv2-A
large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data 10, 1 (2023), 41.

	Slide 1

