

AI for Science on Modular Supercomputers

Performance Evaluation of Coupled Atmospheric–AI Workflows

Takashi ARAKAWA^{1,3*} (arakawa@climtech.jp), Hisashi YASHIRO², Shinji SUMIMOTO¹, Kazuya YAMAZAKI¹, Kengo NAKAJIMA¹

1.The University of Tokyo, Japan, 2.National Institute for Environmental Studies, Japan, 3.CliMTech Inc., Japan

1 Background/Objectives

- **AI surrogates** are increasingly used to accelerate physical processes in Earth system (climate) models
- Atmospheric simulations still rely mainly on **CPU-based models**, requiring efficient coordination with **GPU-based AI**
- **Modular supercomputers** enable heterogeneous CPU–GPU execution, but practical coupling workflows remain underexplored

- Develop a **loosely coupled Atmospheric Model(NICAM)–AI workflow** for AI-for-Science applications
- Demonstrate **asynchronous CPU–GPU coupling** using h3-Open-UTIL/MP and h3-Open-SYS/WaitIO on modular systems
- Evaluate execution performance and resource balance on Wisteria/BDEC-01 and Miyabi

2 Methods

2.1 WaitIO and UTIL/MP

- **WaitIO**^[1] is a **communication library** that enables asynchronous CPU–GPU data transfer across heterogeneous nodes
- **UTIL/MP**^[2] is a **coupling library** that manages data exchange and grid remapping between NICAM and the AI module

2.2 NICAM

- **NICAM**^[3] is a **global nonhydrostatic** atmospheric model that covers the whole globe with a uniform grid

2.3 NICE

- **NICE(NICAM Cloud Emulator)** is an AI-surrogate model that replaces the cloud microphysics scheme in NICAM
- The AI model consists of a **three-layer multilayer perceptron (MLP)** implemented using **PyTorch**

2.4 Workflow

1. **Data extraction:** Eight microphysics input variables and eight output tendencies are passed from NICAM to UTIL/MP
2. **Communication:** Data are asynchronously transferred to the AI module via WaitIO
3. **Grid remapping:** NICAM’s 14 km fields are internally remapped by UTIL/MP to the 224 km grid used for AI training
4. **Layer-wise training:** The AI model is trained to reproduce output tendencies from input variables for each vertical layer

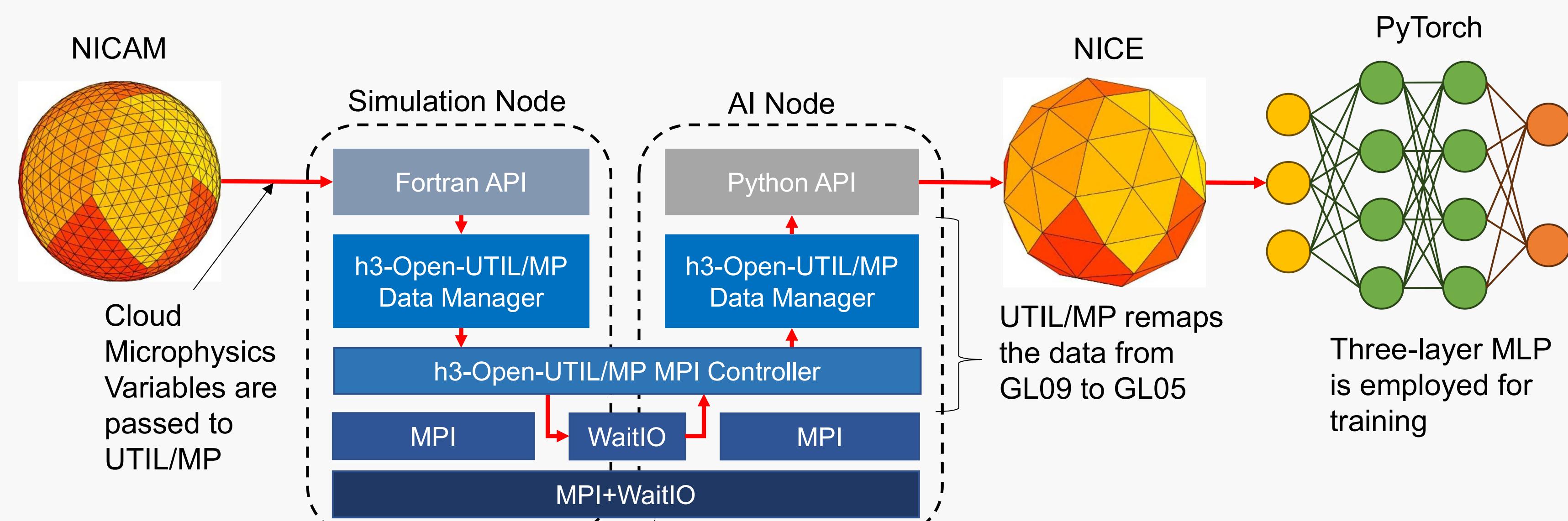
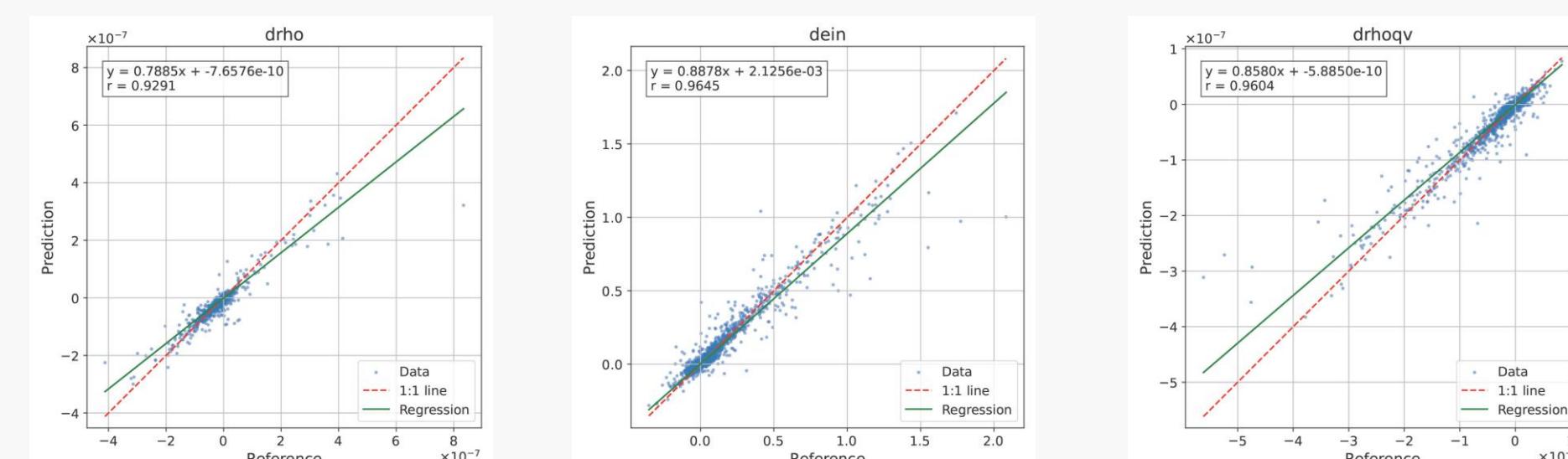


Fig.1 Data flow of NICAM-AI coupling

3 Results

3.1 Reproducibility

- Correlation
 - The AI model was trained using data at **5–6 h** and evaluated by reproducing the fields at **7 h**
 - For three representative variables, the correlation **coefficients exceed 0.92**
 - The regression slopes range from **0.79 to 0.89**, indicating good reproducibility



- Horizontal fields
 - The model trained on **two days of data** was applied to the **5th day** of the simulation
 - Results are shown for **total air density (drho)** at **5,500 m** in the **mid-troposphere**
 - The AI prediction shows **excellent agreement** with the simulated field

Fig.2 Correlation of simulation vs prediction

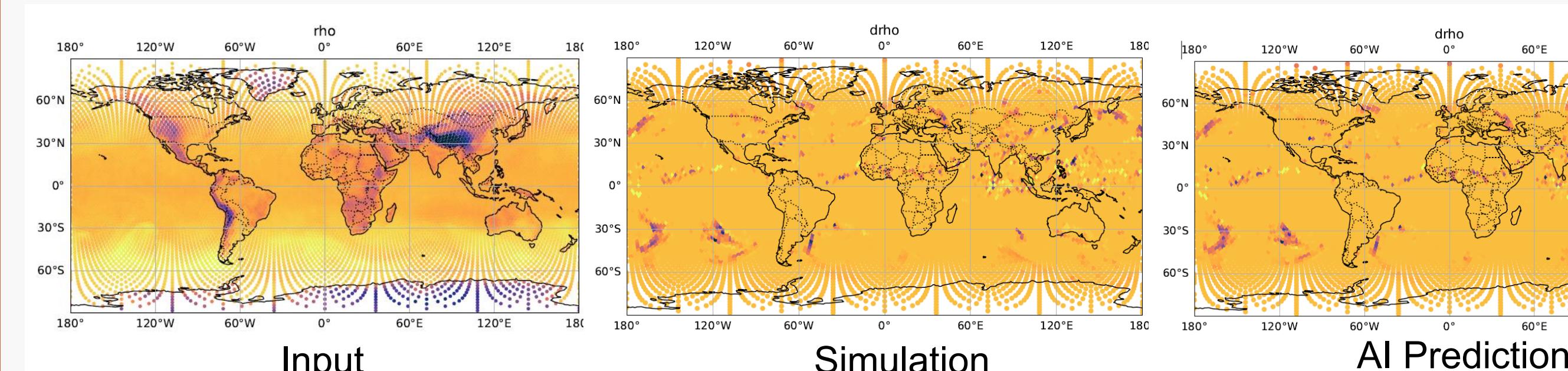


Fig.3 Horizontal field of simulation and AI prediction

3.2 Computational Performance

- Experimental setting
 - NICAM: **640**, AI: **20** processes
 - **Wisteria/BDEC-01:** NICAM **160** and AI **3 nodes**
 - Miyabi: NICAM **32** and AI **20 nodes**.
- Overall Execution Time
 - On **Wisteria/BDEC-01**, Dynamics and Physics are **4.4 ×** and **3.1 ×** faster than on **Miyabi**, due to larger node counts and the **A64FX high memory bandwidth**
 - On Wisteria, **NICAM outpaces AI**, causing **idle waiting**
 - On Miyabi, **slower NICAM dominates runtime**
- Training Time
 - Training performance is **~2 × faster on Miyabi (H100) than on Wisteria (A100)** and is **batch-size-dependent**, indicating a **memory- and data-transfer-bound** regime rather than compute-bound execution

Table 1 Experimental setting

Model	System	Processes	Nodes	Threads
NICAM	Odyssey	640	160	12
	Miyabi-C	640	32	5
NICE	Aquarius	20	3	None
	Miyabi-G	20	20	None

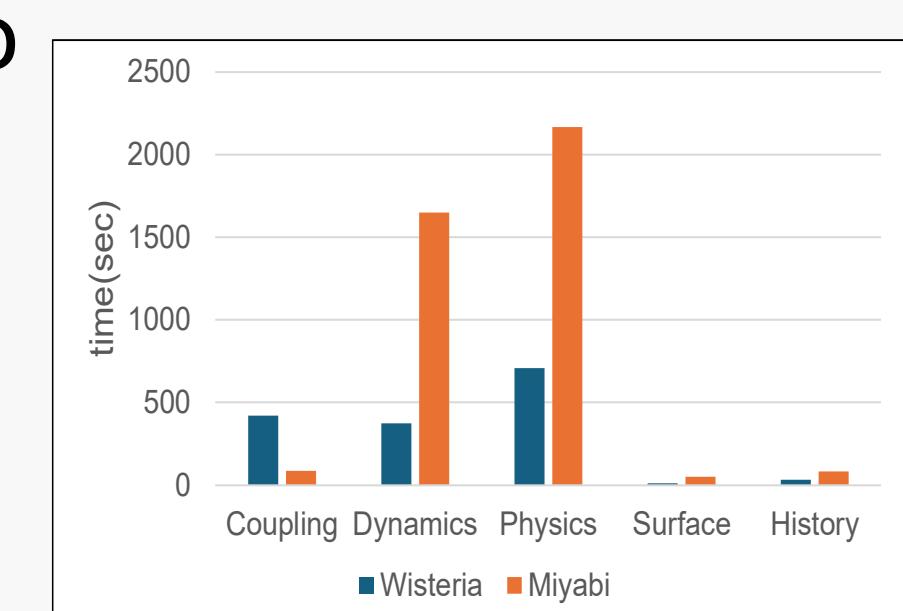


Fig.4 Execution time

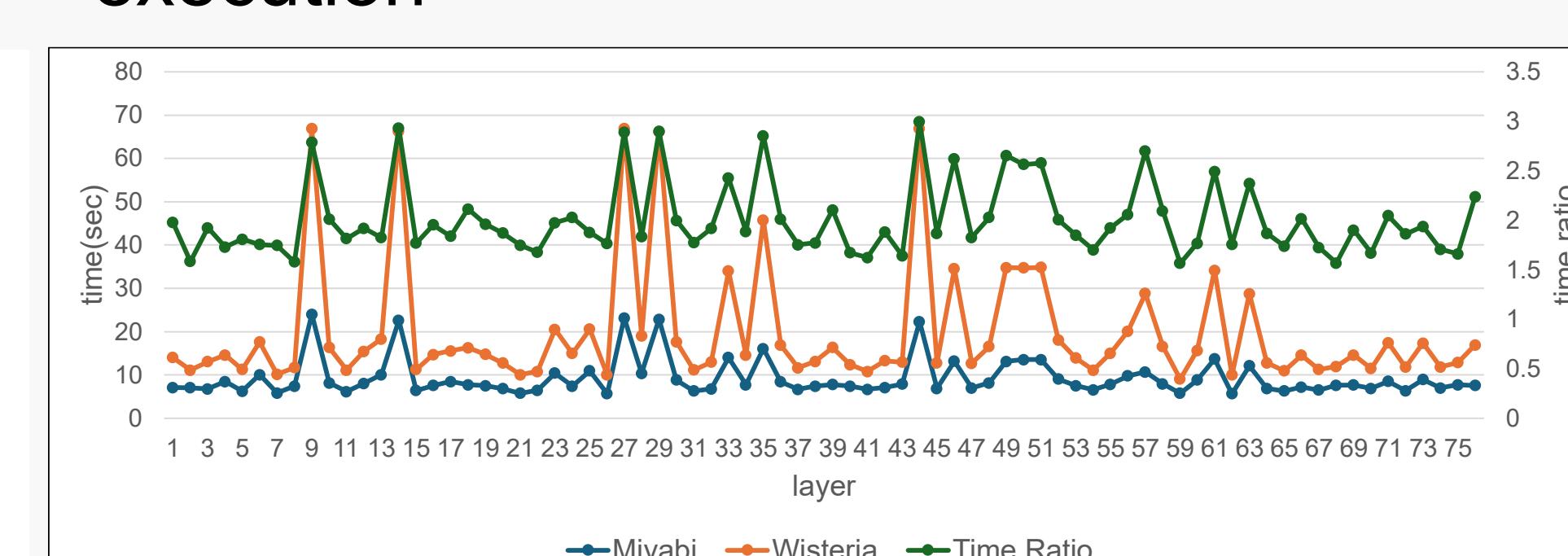


Fig.5 Training time and time ratio

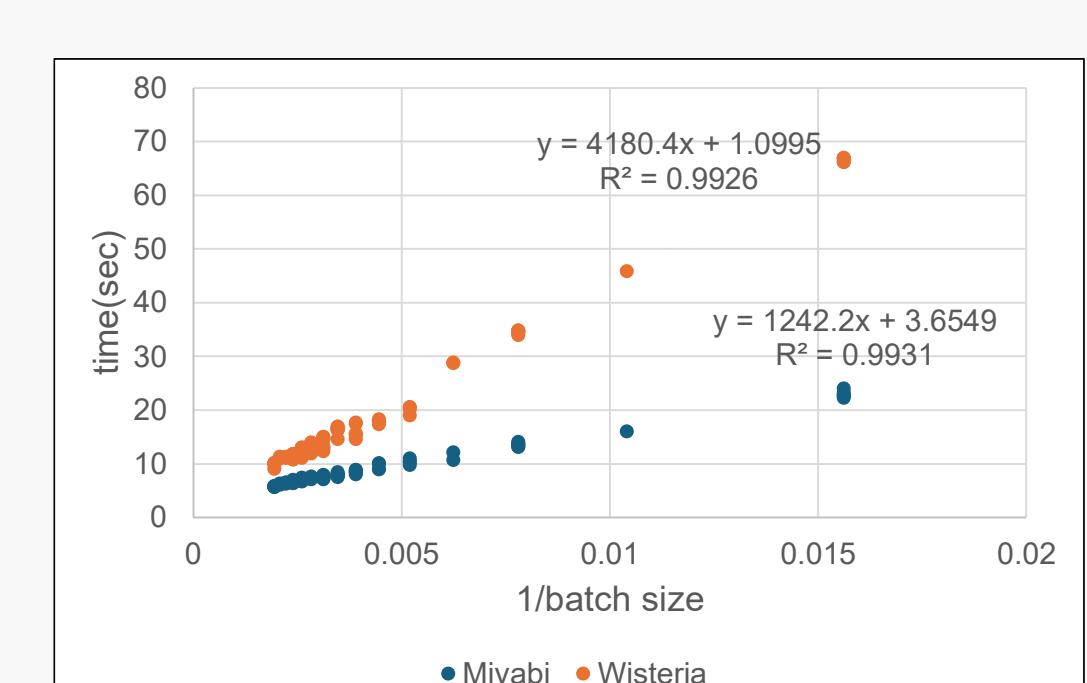


Fig.6 Time vs batch size

4 Conclusion

- We demonstrated a **practical NICAM–AI workflow** using asynchronous heterogeneous coupling on modular supercomputers
- Performance is strongly affected by **resource balance**: faster NICAM causes idle waiting, while faster AI shifts the bottleneck to NICAM execution
- Since training time depends on **batch size**, selecting **appropriate training parameters with training cost in mind** is essential

Reference

1. Sumimoto et al., A System-Wide Communication to Couple Multiple MPI Programs for Heterogeneous Computing, PDCAT 2022, 2022, 10.1007/978-3-031-29927-8_25
2. Arakawa et al., Development of a coupler h3-Open-UTIL/MP, HPC Asia 2022, 2022, 10.1145/3492805.3492809
3. Satoh et al., The Non-hydrostatic Icosahedral Atmospheric Model: description and development, PEPS, 2014, 10.1186/s40645-014-0018-1