
Edge computing has become important and enabled applications such

as real-time data processing in IoT. In Edge computing, a big

challenge is the huge amounts of time-series data, such as audio and

images, produced by IoT devices, which will increase storage and

power consumption in edge servers. Nowadays, data compression is

a critical technique to address this problem. Different from prior

research, which mainly focused on raw throughput and overlooked

critical metrics such as energy efficiency and real-time responsiveness

in multi-task edge environments, this research quantitatively evaluates

the performance and limitations of data compression in an edge

server, and demonstrates that multi-core processors may not meet

contemporary requirements for real-time data compression in edge

computing.

Evaluation of Energy-efficient Real-time Data Compression in Edge Computing
Yuta Shimizu †, Van An Le§, Yusuke Tanimura§, Yiyu Tan†

†Faculty of Science and Engineering, Iwate University, Japan

§ National Institute of Advanced Industrial Science and Technology, Japan

SCA/HPCAsia Jan. 26~29, 2026, Osaka, Japan

➢ Evaluation Results

➢ Introduction

➢ Methods

Reference:
[1] https://github.com/NVIDIA/CUDALibrarySamples/tree/main/nvCOMP

[2] https://www.cs.toronto.edu/~kriz/cifar.html

[3] https://github.com/karolpiczak/ESC-50

➢ Conclusion

Edge servers with multi-core processors have reached their practical

limit for real-time data compression in edge computing due to poor

scaling, severe efficiency loss in the case of high compression

ratio, and latency increase in real-world environment. To address

this, dedicated hardware accelerators like FPGAs and GPUs may be

required to achieve high energy efficiency and highly scalable data

processing in edge servers.

Table 2 Performance under load contention

Table 1: Energy efficiency in the zstd

compression

ratio

energy efficiency

(MB/s/W)

compression

ratio

energy efficiency

(MB/s/W)

zstd_L1 0.749 9.087 0.870 2.569

zstd_L3 0.735 7.812 0.868 2.68

zstd_L7 0.736 5.225 0.866 1.806

zstd_L10 0.736 4.584 0.866 1.377

zstd_L15 0.713 1.55 0.847 0.61

audio image
algorithm

mode

audio image audio image audio image audio image audio image

deflate_zlib 0.697 0.835 22.973 22.327 4.446 0.054 24.219 0.167 0.895 1.023

gzip 0.724 0.866 23.244 23.495 4.381 0.039 23.937 0.091 0.882 0.88

snappy 0.808 0.864 1035.61 195.8 0.113 0.005 1.353 0.011 40.13 7.378

zstd 0.726 0.868 223.026 72.732 0.326 0.015 4.747 0.035 8.094 2.762

lz4 0.856 0.923 968.381 357.35 0.1 0.003 1.263 0.006 37.641 13.412

Compression

ratio

Throughput

(MB/s)

p50_latency

(ms)

p99_latency

(ms)

Energy efficiency

(MB/s/W)Algorithm

❖Modern data compression algorithms, including deflate, gzip,

snappy, zstd, and lz4 [1], were implemented and their performance

was evaluated on an edge node with an Intel i7-6950X (20 threads)

processor, and their performance, including compression ratio,

power efficiency, and latency, was evaluated.

❖ Datasets: CIFAR-10 (image) [2] and ESC-50 (audio) [3]

❖ Experiments:

 Core scalability to explore the relation between compression

performance and the number of cores.

 Trade-off at compression level to study the trade-off between

compression ratio and energy efficiency.

 Real-time performance under load contention to study the

latency of real-time data compression in the case of multiple

tasks being executed simultaneously.

❖ Compression level trade-off. The compression performance of

the algorithm zstd at different compression levels is measured

(Table 1).

 As the compression is increased from level 1 to level 15 (higher

level is, more optimization are employed), although

compression ratio is improved slightly (3.6% in audio and

2.3% in image), the energy efficiency is dropped by 83%

(from 9.097 MB/s/W to 1.55 MB/s/W) and 76% (from 2.569

MB/s/W to 0.61 MB/s/W) in the audio and image,

respectively.

❖ Core scalability. The compression throughput of the algorithms

snappy and zstd (level 3) in the case of different threads is

evaluated (Figure 1).

 The parallelism of CPU is saturated as the core count is

increased.

 The ultra-fast algorithm snappy exhibits a severe bottleneck,

with throughput increasing by only about 2.1% (from 1442.43

MB/s to 1472.76 MB/s) in the audio and dropping by 6.2% in

the image when scaling from 1 thread to 20 threads, which

indicates that the saturation is limited by I/O and memory

bandwidth rather than core count.

❖ Real-time performance under load contention. Table 2 shows

real-time latency of the compression task in real-world

environments, where data compression and other multiple parallel

tasks occupied half of CPU resources, respectively.

 Under load contention, even the fastest algorithm snappy, the

P99 latency is degraded by about 6.5% (from 1.265ms with

full CPU resources to 1.353ms with 50% of CPU resources) in

the audio, which is a critical failure for time-sensitive edge

applications.

Figure 1: Compression throughput in the zstd and snappy

	Slide 1

