
Edge computing has become important and enabled applications such 

as real-time data processing in IoT. In Edge computing, a big 

challenge is the huge amounts of time-series data, such as audio and 

images, produced by IoT devices, which will increase storage and 

power consumption in edge servers. Nowadays, data compression is 

a critical technique to address this problem. Different from prior 

research, which mainly focused on raw throughput and overlooked 

critical metrics such as energy efficiency and real-time responsiveness 

in multi-task edge environments, this research quantitatively evaluates 

the performance and limitations of data compression in an edge 

server, and demonstrates that multi-core processors may not meet 

contemporary requirements for real-time data compression in edge 

computing. 
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➢  Conclusion

Edge servers with multi-core processors have reached their practical 

limit for real-time data compression in edge computing due to poor 

scaling, severe efficiency loss in the case of high compression 

ratio, and latency increase in real-world environment. To address 

this, dedicated hardware accelerators like FPGAs and GPUs may be 

required to achieve high energy efficiency and highly scalable data 

processing in edge servers.

Table 2 Performance under load contention 

Table 1: Energy efficiency in the zstd

compression

ratio

energy efficiency

(MB/s/W)

compression

ratio

energy efficiency

(MB/s/W)

zstd_L1 0.749 9.087 0.870 2.569

zstd_L3 0.735 7.812 0.868 2.68

zstd_L7 0.736 5.225 0.866 1.806

zstd_L10 0.736 4.584 0.866 1.377

zstd_L15 0.713 1.55 0.847 0.61

audio image
algorithm

mode

audio image audio image audio image audio image audio image

deflate_zlib 0.697 0.835 22.973 22.327 4.446 0.054 24.219 0.167 0.895 1.023

gzip 0.724 0.866 23.244 23.495 4.381 0.039 23.937 0.091 0.882 0.88

snappy 0.808 0.864 1035.61 195.8 0.113 0.005 1.353 0.011 40.13 7.378

zstd 0.726 0.868 223.026 72.732 0.326 0.015 4.747 0.035 8.094 2.762

lz4 0.856 0.923 968.381 357.35 0.1 0.003 1.263 0.006 37.641 13.412

Compression

ratio
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(MB/s)

p50_latency

(ms)
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(ms)

Energy efficiency

(MB/s/W)Algorithm

❖Modern data compression algorithms, including deflate, gzip, 

snappy, zstd, and lz4 [1], were implemented and their performance 

was evaluated on an edge node with an Intel i7-6950X (20 threads) 

processor, and their performance, including compression ratio, 

power efficiency, and latency, was evaluated.

❖ Datasets: CIFAR-10 (image) [2] and ESC-50 (audio) [3]

❖ Experiments:

 Core scalability to explore the relation between compression 

performance and the number of cores.

 Trade-off at compression level to study the trade-off between 

compression ratio and energy efficiency.

 Real-time performance under load contention to study the 

latency of real-time data compression in the case of multiple 

tasks being executed simultaneously.

❖  Compression level trade-off. The compression performance of 

the algorithm zstd at different compression levels is measured 

(Table 1). 

 As the compression is increased from level 1 to level 15 (higher 

level is, more optimization are employed), although 

compression ratio is improved slightly (3.6% in audio and 

2.3% in image), the energy efficiency is dropped by 83% 

(from 9.097 MB/s/W to 1.55 MB/s/W) and 76% (from 2.569 

MB/s/W to 0.61 MB/s/W ) in the audio and image, 

respectively.

❖  Core scalability. The compression throughput of the algorithms 

snappy and zstd (level 3) in the case of different threads is 

evaluated (Figure 1).

 The parallelism of CPU is saturated as the core count is 

increased. 

 The ultra-fast algorithm snappy exhibits a severe bottleneck, 

with throughput increasing by only about 2.1% (from 1442.43 

MB/s to 1472.76 MB/s) in the audio and dropping by 6.2% in 

the image when scaling from 1 thread to 20 threads, which 

indicates that the saturation is limited by I/O and memory 

bandwidth rather than core count.

❖ Real-time performance under load contention. Table 2 shows 

real-time latency of the compression task in real-world

environments, where data compression and other multiple parallel

tasks occupied half of CPU resources, respectively.

 Under load contention, even the fastest algorithm snappy, the

P99 latency is degraded by about 6.5% (from 1.265ms with 

full CPU resources to 1.353ms with 50% of CPU resources) in 

the audio, which is a critical failure for time-sensitive edge 

applications.

Figure 1: Compression throughput  in the zstd and snappy
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