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Abstract ——  ————————  ————Introduction

GPU-accelerated HPC clusters suffer from idle GPUs, long queues,
and unfair slowdowns due to static, CPU-centric schedulers.

GPU-accelerated HPC workloads are heterogeneous and dynamic, while
production schedulers rely on static heuristics such as FCFS and backfilling.
Approach:

We propose a real-time Multi-Agent Reinforcement Learning (MARL)
scheduler that decomposes scheduling into job selection and GPU
resource allocation, trained cooperatively using PPO.

This mismatch leads to:
= |dle GPUs despite long queues
= Large jobs blocking short jobs

» |nefficient handling of bursty arrivals
Results:

Evaluated on 86,720 production Slurm jobs, our approach improves:
= GPU utilization by +11.8%

= Bounded slowdown by ~7%

= Sub-millisecond inference latency

Key insight: Static heuristics cannot adapt to real-time workload variability in
modern GPU clusters.
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Unlike heuristics, MARL adapts trade-offs dynamically as workload conditions change.

Production Readiness
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