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GPU-accelerated HPC clusters suffer from idle GPUs, long queues, 

and unfair slowdowns due to static, CPU-centric schedulers.

Approach:

We propose a real-time Multi-Agent Reinforcement Learning (MARL) 

scheduler that decomposes scheduling into job selection and GPU 

resource allocation, trained cooperatively using PPO.

Results:

Evaluated on 86,720 production Slurm jobs, our approach improves:

▪ GPU utilization by +11.8%

▪ Bounded slowdown by ~7%

▪ Sub-millisecond inference latency

GPU-accelerated HPC workloads are heterogeneous and dynamic, while 

production schedulers rely on static heuristics such as FCFS and backfilling.

This mismatch leads to:

▪ Idle GPUs despite long queues

▪ Large jobs blocking short jobs

▪ Inefficient handling of bursty arrivals

Key insight: Static heuristics cannot adapt to real-time workload variability in 

modern GPU clusters. 

Two-Agent Architecture

Selector Agent

• Chooses which job to admit from the 

queue

• Balances fairness and responsiveness

Allocator Agent

• Assigns GPUs/nodes to the selected job

• Accounts for hardware heterogeneity and 

fragmentation

Training

•Cooperative PPO

•Offline training on real Slurm traces

•Online inference in real time

Realistic Evaluation: 

▪ Workload: 86,720 production jobs 

(Spartan HPC cluster)

▪ Cluster: 30-node GPU partition

▪ Baselines: 9 allocator–selector 

combinations

(Best Fit, Topology-Aware, First Available × 

FCFS, LCFS, SJF)

Metrics: Waiting time, Turnaround time, 

Bounded slowdown, GPU utilization

The scheduler jointly optimizes:

▪ ↓ Average waiting time       

▪ ↓ Turnaround time

▪ Real-time inference: ~1 ms per 

scheduling decision

▪ Scalable execution: inference cost 

depends on model size, not cluster 

size

▪ Safe training pipeline: offline training 

with zero impact on live workloads

▪ Native integration: implemented as a 

lightweight Slurm plug-in

▪ Workflow compatibility: interoperates 

with existing HPC scheduling 

workflows

Why This Matters?

▪ Reduces idle GPUs and wasted compute

▪ Improves fairness between short and long jobs

▪ Maintains responsiveness under 

dynamic workloads

▪ Deployable in real HPC systems today

Decomposed MARL enables practical, fair, and real-time GPU scheduling for modern HPC clusters.

GPU scheduling in modern HPC systems involves two 

tightly coupled decisions under dynamic and 

heterogeneous workloads:

▪ Job selection: choosing which job to admit from a 

continuously changing queue

▪ GPU allocation: assigning heterogeneous GPU 

resources while avoiding fragmentation

▪ Operational challenge: static heuristics conflate 

these decisions, limiting adaptability under bursty 

arrivals and mixed job sizes

▪ Observed impact: idle GPUs, long waiting times, 

and degraded fairness
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Key Outcomes

▪ ↓ ~7.2% reduction in bounded slowdown (fairness)

▪ ↑ +11.8% GPU utilization

Unlike heuristics, MARL adapts trade-offs dynamically as workload conditions change.
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GPU Utilization by Partition

Sustained GPU utilization across partitions under live 

scheduling.

Demonstrates stable, high GPU usage with real-time multi-

agent decisions.

Job Scheduling & Queue Management

Queue wait time decreases as agents adapt 

online.

Indicates faster job admission without sacrificing 

resource efficiency
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