
Proposal of The AI Scientist v2 for High Performance Computing
with Local Large Language Models

Takanori Kotama1,2 Rio Yokota2 Daichi Mukunoki3 Tetsuya Hoshino3 Takahiro Katagiri3
1 School of Informatics, Nagoya University 2 RIKEN Center for Computational Science (R-CCS)

3 Information Technology Center, Nagoya University

1. Background & Motivation
LLMs are increasingly used to automate scientific work: hypothesis generation, experiment
execution, and manuscript drafting. The AI Scientist v2 [1, 3] demonstrates such automation
as a modular pipeline. Goal: extend this framework to High Performance Computing (HPC)
research. However, applying it directly is challenging due to the fundamental differences between
"AI algorithm research" and "HPC system research."

Figure 1: Conceptual overview of the AI Scientist-v2 pipeline. Adapted from The AI Scientist-v2 [1].

2. Challenges: Applying AI Scientist to HPC
The original AI Scientist is tailored for Python-based data analysis, making it unsuitable for
heterogeneous HPC environments. Specific gaps include:
▶ Python Exclusivity: The framework is hard-wired for Python. It cannot generate or

implement C/C++/Fortran/MPI codes.
▶ Workflow Mismatch: It lacks the Code Gen → Compile → Run → Measure loop.
▶ Hardware Opacity: The default system has no mechanism to access CPU internal

information (e.g., microarchitecture).

3. Contributions
To bridge the gap between AI automation and HPC reality:
▶ Environment Transparency: We implement a probing mechanism to extract

CPU/toolchain info and inject it into the agent’s context.
▶ HPC Execution Loop: A robust C/C++ compile-run-debug loop with failure recovery for

batch systems.
▶ Deterministic Build Templates: Hard-coded compilation templates to ensure valid

flags/link-order for specific HPC libraries.
▶ Local-LLM Integration: Support for local models (via Ollama) to address data privacy and

cost concerns in academic HPC.
4. System Overview (HPC Extension + Model Routing)

Figure 2: System overview of our HPC extension (environment probing + model routing + compile/run/debug loop).

▶ Arbitrary Model Configuration: Each module’s backend LLM can be configured
arbitrarily (Local or Commercial API).

▶ Code generation loop: probe environment → generate C/C++ → compile/run → parse
logs → iterate.

5. Demonstration: Motivation & Models
Task: Automated Paper Generation on OpenBLAS Performance Stability.
Why OpenBLAS? It is a representative HPC numerical library where (i) toolchain correctness
(compiler/linker/ABI) and (ii) runtime stability (threads/affinity/dispatch) directly impact
measured performance.
Agent Settings (only experiment module differs):
▶ External: experiment module uses a commercial LLM (e.g., GPT-4o).
▶ Local: experiment module uses an Ollama backend (local LLMs). (Other modules remain

external for manuscript quality).
Local Model Routing (inside experiment module):
▶ Code generation: qwen2.5vl:32b
▶ Log parsing / summarization: qwen3:8b
▶ Multimodal feedback: z-uo/qwen2.5vl_tools:32b
▶ Final aggregation: gpt-oss:120b

6. Demonstration: Environment & Experiments
Environment Transparency (What we probe): CPU microarchitecture, Compiler toolchain
(gcc/clang), Runtime libraries (BLAS/OpenMP), Key runtime constraints.
Target Research Topics for Generated Papers (Experiments 1–3):

1. Adaptive Concurrency Scaling for Stabilizing OpenBLAS Performance in Heterogeneous HPC
Systems

2. Adaptive Kernel Dispatch for Stabilizing OpenBLAS Performance on Hybrid HPC
Architectures

3. Real-Time Adaptive Mixed-Precision Tuning in OpenBLAS for HPC Workloads

7. Results Snapshot
Table 1: Rubric assessment scores comparing External (GPT-4o) and Local (Ollama) models. Values are shown as Score/Max(4).

TopicModel OriginalityQualityClaritySignificanceSoundnessPresentationContributionOverallConfidenceDecision
1 External 3/4 3/4 3/4 3/4 2/4 3/4 3/4 4/10 4/5 Reject

Local 3/4 3/4 3/4 3/4 2/4 3/4 2/4 4/10 4/5 Reject
2 External 3/4 2/4 3/4 3/4 2/4 3/4 2/4 3/10 4/5 Reject

Local 3/4 2/4 2/4 3/4 2/4 2/4 2/4 4/10 4/5 Reject
3 External 3/4 2/4 3/4 3/4 2/4 3/4 2/4 3/10 4/5 Reject

Local 3/4 2/4 2/4 3/4 2/4 2/4 2/4 4/10 4/5 Reject

Takeaway: Local execution is broadly comparable on rubric scores, but failures are dominated by
toolchain/library inference, motivating stronger environment validation for autonomous HPC
experimentation.

Draft by GPT-4o (commercial API): pages 1–6

Draft by Local LLM (Ollama): pages 1–5

Data Availability:
The full machine-generated thesis using a commercial AI service and an
ollama-hosted LLM is accessible via the QR code.

8. Conclusion & Future Work
▶ We propose an HPC-ready extension of AI Scientist v2 [1] via environment transparency

and local-LLM routing.
▶ Key bottleneck: robust compilation and dependency inference under heterogeneous cluster

toolchains.
▶ Next: toolchain validation, compilation-strategy reasoning, and architecture-aware

optimization for robustness.

References
[1] The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search,

arXiv:2504.08066, 2025. (CC BY 4.0)
[2] M. J. Fontaine et al., “The AI Scientist: Towards Fully Automated Open-Ended Scientific

Discovery,” arXiv:2412.05210, 2024.
[3] J. Barrett et al., “The AI Scientist v2: Modular Autonomous Research Agents,” GitHub

Repository, 2024.

HPC Asia 2026 | January 26–29, 2026 | Osaka, Japan

