Proposal of The Al Scientist v2 for High Performance Computing
with Local Large Language Models

Takanori Kotama'? Rio Yokota? Daichi Mukunoki® Tetsuya Hoshino® Takahiro Katagiri®

1 School of Informatics, Nagoya University 2 RIKEN Center for Computational Science (R-CCS
3 Information Technology Center, Nagoya University

1. Background & Motivation /. Results Snapshot

LLMs are increasingly used to automate scientific work: hypothesis generation, experiment Table 1: Rubric assessment scores comparing External (GPT-40) and Local (Ollama) models. Values are shown as Score/Max(4).
execution, and manuscript drafting. The Al Scientist v2 [1, 3] demonstrates such automation Topic Model
as a modular pipeline. Goal: extend this framework to High Performance Computing (HPC) 1
research. However, applying it directly is challenging due to the fundamental differences between

Originality Quality Clarity Significance Soundness Presentation Contribution Overall Confidence Decision

External 3/4 3/4 3/4 3/4 2/4 3/4 3/4 4/10 4/5
local 3/4 3/4 3/4 3/4 2/4 3/4 2/4 4/10 4/5

Reject
Reject

"Al algorithm research” and "HPC system research." 5

N

X)< Idea Generation

Tree-Based Experimentation = Paper Write-Up

(({

4 A

LLM Idea/Plan
Innovation

1. Preliminary Idea Investigation

VLM Feedback
. J

v

()

& [Write to exp. log] OI[Select Best Node]

Plotting + 3

External 3/

| ocal

External 3/

| ocal

3/

~ B~ B B B

3/

2/4 3/4
2/4 2/4
2/4 3/
2/4 2/4

3/4
3/4
3/4
3/4

2/4
2/4
2/4
2/4

3/4
2/4
3/4
2/4

2/4
2/4
2/4
2/4

3/10
4/10
3/10
4/10

4/5
4/5
4/5
4/5

Reject
Reject

Reject
Reject

Manuscript

Template
NOV6|ty Check & [Write to exp. log] O[Select Best Node] \ /
Sem. Scholar v

2. Baseline Hyperparameter Tuning %

R A | | T toolchain/library inference, motivating stronger environment validation for autonomous HPC
& [Write to exp. log] O[Select Best Node] - ~ EX p e ri m e n t a t I O n .
|dea scoring / LLM Paper
archiving 4. Conducting Ablation Studies J g Reviewing Draft by GPT_40 (Commercial AP'): pages]_—6

Figure 1: Conceptual overview of the Al Scientist-v2 pipeline. Adapted from The Al Scientist-v2 [1].

Takeaway: Local

2. Related Work s ant s e sy Ly e s sy, Computation Precision vs. Performance
Adaptive Concurrency Scaling for Stabilising OpenBLAS Dynamic concurrency. Early smdies on NUMA. ma- . —*~ single precision
i b e P . Y 8 g Op chines showed that thread throttling alleviates contention \ O\ 175 Double Precision
" Performance in Heterogeneous HPC Systems and migration penalties (Schwarzrock et al., 2020). e
Schwarzrock et al. (2022) refined these ideas with smooth- 003 — " oot
] [] ing filters to reduce controller oscillation. ACS inherits the » T .

The original Al Scientist is tailored for Python-based data analysis, making it unsuitable for
heterogeneous HPC environments. Specific gaps include:

» Python Exclusivity: The framework is hard-wired for Python. |t cannot generate or
implement C/C++ /Fortran/MPI codes.

» Workflow Mismatch: It lacks the Code Gen — Compile — Run — Measure loop.

» Hardware Opacity: The default system has no mechanism to access CPU internal
information (e.g., microarchitecture).

3. Contributions

To bridge the gap between Al automation and HPC reality:

Anonymous Authors'

Abstract
High-performance linear-algebra libraries are rou-
tinely deployed with a fixed thread count that is
chosen once at start-up. On modern heteroge-
neous processors this static choice often leads
to unstable runtime behaviour and unnecessary
energy dissipation, because the “best” thread
count is workload-, temperature- and micro-
architecture-dependent. We introduce Adapti

memory access (NUMA) machines, or under-utilisation
after dynamic frequency scaling, can lead to fluctuations of
more than 2x in time-to-solution (Wang et al., 2022). Long
job turn-around times increase operating cost, complicate
performance modelling and hinder ibility.

Inspired by prior work on dynamic concurrency throttling
in operating systems (Schwarzrock et al., 2020; 2022), we
hypothesise that kernel-internal concurrency control can
tame variability without burdening the user. We therefore

core idea but operates inside a numerical library, avoiding
system-wide synchronisation.

Autotuning and input awareness. Autotuners such as
IrGEMM (Wei et al., 2024) or roofline-guided search tools
(Torring et al., 2021) explore static parameter spaces offline.
ACS is complementary: instead of choosing one configura-
tion, it navigates a 1-D sub-space (thread count) online.

Energy-aware execution. Joint optimisation of concur-
rency with voltage/frequency scaling has been studied for
task runtimes (Mufioz et al., 2021) and for equation solvers
on GPUs (Mills et al., 2024). We target CPU-only BLAS

Figure 1. Left: ACS tracks the concave performance curve and
selects the near-optimal number of threads in real time (higher is
better). Right: resulting execution time across repeated invocations
illustrates reduced variability compared with static settings.

1. Sampling. Immediately before entering the compute
loop, we read CORE_CYCLES and STALL_CYCLES.
The difference between start and end values gives us
an estimate of stall rate s.

Figure 2. Execution time (lower is better) for eight successive
BLAS calls. Left: static 64-thread baseline. Right: ACS. ACS
removes outliers caused by transient thermal throttling and NUMA
interference.

Energy is measured via RAPL and reported as energy-delay
product (EDP).

6. Experiments

1 2 3 4 5 6 7 8
Number of Threads

Figure 3. ACS under single and double precision. Although abso-
lute GFLOPS differ, the thread-optimisation behaviour remains

Concurrency Scaling (ACS), a light-weight feed- propose Adaptive Concurrency Scaling (ACS) and inte- kernels and r.ely on the hardwm“e power governor to translate 2. Decisioq. If 5 > Smax we decrease the lhl‘cﬂtad count consistent.
back controller that is embedded inside Open- grate it directly into OpenBLAS 0.3.30. ACS differs from the reduced idle time of ACS into energy savings. by one; if s < sin and idle cores are available we Micro-benchmarks. ~Figure 2 contrasts runtime per call
BLAS kernels and tunes the number of active existing node-level governors in three ways: increase it by one. Thresholds are set empirically to for the baseline and ACS. Static threading shows a mono- . .
threads on the fly. ACS samples two unprivileged Performance variability management. Recent surveys Smin = 0.15 and $yax = 0.35. tonic decrease in time only up to four threads and then 7. Conclusion
renc emphasise the importance of mitigating unpredictable slow- . . i i . .
hardware counters—reference cycles and stall cy- . Fine granularity. A new decision can be made at every pl P gating unp; 3. Enforcement. OpenBLAS maintains a per-thread pool. plateaus. ACS, in contrast, keeps execution near the fastest We presented ACS, a library-internal feedback controller

cles—at ~2kHz, estimates current computational
intensity, and throttles or expands the thread team
so that the ratio of useful work to energy is max-
imised. Across synthetic DGEMM/DTRSM micro-
benchmarks and a PDE mini-application, ACS
decreases the coefficient of variation of runtime
by 25% while matching or outperforming the best
etting in 93% of the cases we tested. Be-
e the controller resides entirely inside the
BLAS layer, no user code changes are required,
enabling immediate deployment in existing HPC
workflows.

1. Introduction

The Basic Linear Algebra Sub-programs (BLAS) un-
derpin a vast fraction of scientific and machine-
learning workloads. OpenBLAS, a widely used open-
source implementation, provides platform-specific micro-
kernels—including recent ARM SVE variants (Garade et
2025)—but still relies on a static environment variable (e.g.
OPENBLAS_NUM_THREADS) to select the thread count.
Unfortunately, thread over-subscription on non-uniform

Institution. City, Region,
s Country. Cor to: s Author
<anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

call to a BLAS routine, enabling rapid adaptation to
phase changes inside applications.

S

. Low overhead. ACS relies solely on user-space perfor-
mance counters and a two-state proportional controller;
the additional instructions add < 0.5% to kernel la-
tency.

w

. Library transparency. Because the public API is un-
modified, ACS automatically benefits software stacks
such as LAPACK, PETSc, or PyTorch that link against
OpenBLAS.

Using the AMD EPYC 7713 dual-socket system described
in Section 5, we demonstrate (Figure 2) that ACS halves run-
time variance for a 1000 x 1000 double-precision DGEMM
and retains the performance trend predicted by roofline the-
ory (Tgrring et al., 2021). Our contributions are:

« the design of a cheap, counter-driven controller for
thread concurrency in BLAS kernels;

+ apatchset that makes ACS available as a compile-time
option in vanilla OpenBLAS;

« an open benchmark suite and exhaustive evaluation of
stability, throughput and energy-delay product under
static and adaptive threading.

for GPU-based early exascale systems. [International
Journal of High Performance Computing Applications,
39:306-325, 2024.

Mufioz, A. N., Lorenzon, A., Ayguadé, E., and Querol, V. B.

downs in HPC systems (Wang et al., 2022). Our evaluation
confirms that much of this variability originates inside dense
numerical kernels and can therefore be addressed at the li-
brary layer.

3. Background

A BLAS routine typically spawns a team of threads, par-
titions the operands and executes architecture-optimised
micro-kernels in tight loops. For DGEMM with matrix side
n, effective performance is bounded by min{2n® /¢, 1
where t is runtime and Biyep, the attainable memory band-
width. On multi-core CPUs, both ¢ and By, depend on:

1. core operating frequency (affected by temperature and
power capping);

2. last-level cache residency of operands;

3. NUMA placement;

4. interference with co-located tasks.
Because these factors fluctuate at timescales of milliseconds
to seconds, a static thread count often drifts away from the
instantaneous optimum.
4. Method

ACS follows a simple measured-value / set-value control
loop (Figure 1):

‘We respect ongoing work sharing regions and change
the pool size only at iteration boundaries to guarantee
correctness.

The controller state consists of a single integer (current team
size) and two counters; its memory footprint is < 64 B. For
kernels that are micro-seconds long we bypass ACS to avoid
perturbing the critical path.

5. Experimental Setup

Experiments run on a dual-socket AMD EPYC 7713
system with 256 logical CPUs and 1TiB RAM, under
Rocky Linux 9.6 and GCC 11. CPU boost and the kernel-
space ondemand governor are left enabled to emulate a
production environment. We compare:

Baseline unmodified OpenBLAS 0.3.30, thread count fixed
to the number of physical cores on the locality domain
(64);

ACS our patched OpenBLAS with default thresholds.
Benchmarks comprise:

+ synthetic DGEMM and DTRSM on square matrices (n €
{256,512, 1024});

« a 3-D Jacobi stencil solver that uses BLAS level-3
kernels for sub-domain updates.

Supplementary Material

A. Controller Pseudocode

if (problem_size < MICRO_THRESHOLD) return;

[] [[[Combining Dynamic Concurrency Throttling with Volt- cycles_start = read_core_cycles();
n age and Frequency Scaling on Task-based P stalls_start = read_stall_cycles();
nvironmen ransparenc € Impiement a probing mecnanism to e€xXtrac
L compute_kernel(); // Unmodified OpenBLAS micro-kernel
Schwarzrock, J., Jordan, M., Korol, G., Oliveira, C. C. D.,

CPU /toolchain info and inject it into the agent’s context.

Lorenzon, A., Rutzig, M. B., and Beck, A. C. S. Dynamic
concurrency throttling on numa systems and data migra-
tion impacts. Design Automation for Embedded Systems,
25:135-160, 2020.

Schwarzrock, J., Rocha, H., Lorenzon, A., and Beck, A.
C. S. Smoothing on dynamic concurrency throttling.

cycles_end = read_core_cycles () ;
stalls_end = read_stall_cycles();

s = (stalls_end - stalls_start)/(cycles_end - cycles_start);

if (s > S_MAX && team_size > 1)

team_size-—;

else if (s < S_MIN && team_size < MAX) team_size++;

observed point while contracting the team when stalls surge,
thereby curbing tail latencies. Across 1000 repetitions of
DGEMM (n=1024) the coefficient of variation drops from
6.9% to 4.9%.

Energy efficiency. Because ACS occasionally releases
cores, average package power decreases by 7.4%. Com-
bined with th d-ups shown in Figure 1, EDP improves
by 11.2% on average, corroborating findings by Mufioz et al.
(2021) for task-based runtimes.

Application case study. Coupling ACS-enabled Open-
BLAS to the stencil solver yields a 1.18x faster solve com-
pared with the best static thread count discovered via ex-
haustive search, validating the end-to-end benefit.

Overheads. Instrumentation increases kernel latency by
0.38% + 0.05 (measured on n = 256), well inside the
noise margin. This conforms with the sub-percent over-
head reported by Schwarzrock et al. (2022) for system-level
governors.

Sensitivity analysis. Single- vs double-precision perfor-
mance (Figure 3) confirms that ACS is agnostic to operand
type; the scheduler follows the same characteristic curve
derived from roofline modelling.

that dynamically tunes thread concurrency in OpenBLAS.
By reacting to instantaneous stall metrics, ACS reduces run-
time variability, improves energy efficiency and requires nei-
ther code modifications nor privileged access. Future work
will (i) extend the controller to heterogeneous CPU-GPU
systems, (ii) explore joint voltage and concurrency control
akin to Muifioz et al. (2021), and (iii) integrate learning-
based thresholds to anticipate workload phases.

Impact Statement

Improved runtime stability lowers the energy footprint of
HPC centres and simplifies capacity planning. By deploy-
ing ACS at the library level we avoid intrusive changes to
established scientific codes. We foresee no negative ethi-
cal implications; the technique merely reallocates existing
compute resources more efficiently.

References

Garade, A. P, Singh, S. P, Rayala, V., Haribabu, D. V., Ku-
mar, S. A., and Sudarsan, S. D. Performance evaluation of
LAPACK using SVE-optimised BLAS kernels. Proceed-
ings of the IEEE High Performance Extreme Computing
Conference, pp. 1-7, 2025.

Mills, R., Adams, M., Balay, S., Brown, J., Faibussowitsch,
J., Isaac, T., Knepley, M., Munson, T., Suh, H., Zampini,
S., Zhang, H., and Zhang, J. PETSc/TAO developments

Element-wise Operation Overhead

Proceedings of the IEEE Int. Parallel & Distributed Pro- X
[] n [u cessing Symp. Workshops, pp. 962-971, 2022. B. Additional Figures 0.09 Duration (seconds)
> Execution Loop: A robust compile-run-debug loop with failure recovery for ——
[] ‘marking techniques: A roofline model case study. Pro- Floating-Point Precision Variability 0.08
ceedings of the IEEE Int. Parallel & Distributed Process- I
ing Symp. Workshops, pp. 806-815, 2021. 0.09 1 —e— Time (seconds) 2 0.07
Wang, Y., Xu, L., Hong, Y., Pan, R., Chang, T., Lux, T, §
Bernard, J., Watson, L., and Cameron, K. Design strate- 0.081 o 0.061
a gies and approximation methods for high-performance c
computing variability management. Journal of Quality % 0.074 2 0.05
Technology, 55:88-103, 2022. -g ‘é
® e e ® . . . Wei, C., Jia, H., Zhang, Y., Yao, I, Li, C., and Cao, W. § 0.06 1 A 0.04
n IrGEMM: An input-aware tuning framework for irregular v
rministi | m ard-coded compilation templates to ensure vali
[| Parallel and Distributed Systems, 35:1672—1689, 2024. g
= o0.04 0.02
. . e . . 0.03 1 2 3 4 5 6 71 8
dgS/ IINK-0Order 1or SpPECITIC IDraries e
g p - 0.02
Figure 5. Element-wise operation overhead after ACS integration.

» Local-LLM Integration: Support for local models (via Ollama) to address data privacy and

cost concerns in academic HPC.

4. System Overview (HPC Extension + Model Routing)

Stage 1: Preliminary Investigation Stage 2: Hyperparameter Tuning

Non-buggy nodes
System Information

(CPU, Memory, etc.) .. --

T
Buggy nodes

Hyperparameter nodes

Ablation nodes

Replication nodes

s A

Aggregation nodes

Best nodes

N = Q .
O \Oo—;b\/ ____ Refinement
AV

Stage 4. Ablation Studies

LS
fame?

'ﬂfl X \...... Debugging

Draft by Local

OpenBLAS Performance in Heterogeneous HPC Systems

Index

Figure 4. Floating-point precision variability over repeated kernel invocations

individual BLAS calls.

able from user space: (i) the difference of APERF and
MPEREF counters normalised by elapsed time (a proxy for
effective frequency) and (ii) the length of the internal work
queue that tracks unprocessed matrix blocks. Both can be
read in O(1) time without a syscall.

LLM (Ollama): pages 1-5

- s (Papadimitriou et al.,). Our controller borrows .2. Control Signal am of Execution Times Config. Mean [s ols Energy proxy

’ CPUs (Papadimitriou et al., 2019). O ller by 4.2. Control Signal g 5o bs) 2y proxy

a8 the idea of sampling light-weight hardware counters (e.g. . . . Static threads 2.80 0.98 30.8
Adaptive Concurrency Scaling for Stabilizing APERF/MPERF ratios) but applies it at the granularity of ~ [1$1d® ¢ach kernel prologue we sample two quantities avail- ACS (ours) 282 084 282

Table 1. Aggregate results (lower is better except o). Static base-
line numbers were collected with identical methodology.

Concurrency in numerical libraries. BLASX (Wang C7s 3% 33 T % 30 35 29
Anonymous Authors' etal., 2015) and MAGMA (Abdelfattah et al., 2024) demon- Exec . H) 6.4. Negative Findings
strate library-internal load balancing across GPUs. Inthe 4.3. Update Rule () Execution time series (b) Histogram

Abstract
OpenBLAS is a cornerstone of scientific software
stacks, yet its throughput and energy efficiency
can fluctuate widely on modern heterogeneous
high-performance computing (HPC) nodes whose
core frequencies, thermal envelopes and NUMA
affinities vary over time. We present an adaptive
concurrency scaling (ACS) mechanism that aug-
ments the OpenBLAS runtime with a very light-
weight feedback controller. The controller sam-
ples inexpensive performance and queue-length
signals at run time and tunes the active thread
count inside every BLAS kernel call. Our pro-
totype requires no source changes to user codes
and keeps binary compatibility with existing ap-
plications. On a dual-socket AMD EPYC 7713
system (256 logical CPUs) we observe a standard-
deviation reduction of execution time from 0.98 s
(static ¢ = 4) to 0.84 s with ACS, while average
run time remains unchanged within measurement
noi

. The energy—delay product improves by
8.5%. Although the absolute performance gains
are modest, the approach demonstrably stabilises
variability without negative regressions, and we
discuss the root causes of remaining fluctuations
and how they inform future work.

veals two culprits. First, modern CPUs constantly renego-
tiate voltage and frequency to respect thermal limits; sec-
ond, operating-system schedulers place threads on cores
with heterogeneous micro-architectural characteristics (dif-
ferent boost head-room, memory distance or SMT sibling
activity). Static thread counts—as used by today’s Open-
BLAS—cannot react to such dynamics.

Prior work has explored dynamic concurrency throttling in
task runtimes (Muiioz et al., 2021; Schwarzrock et al., 2022)
and power-capped servers (Papadimitriou et al., 2019). How-
ever, these systems treat BLAS kernels as opaque units and
thus pay the cost of external monitoring and re-scheduling.
We hypothesise that integrating concurrency adaptation in-
side the BLAS call boundary can provide faster feedback
with negligible overhead.

This paper contributes:

+ a minimal yet fully functional ACS extension to Open-
BLAS that adjusts the number of worker threads on a
per-kernel basis,

+ evidence that ACS reduces run-to-run variability and
moderately lowers energy consumption on a 256-
hardware-thread machine,

« an open discussion of negative or inconclusive findings,
notably the persistence of bimodal latency even with

CPU domain, OpenBLAS uses static partitioning once the
thread pool is spawned. To the best of our knowledge, ACS
is the first attempt to embed a feedback loop directly in the
OpenBLAS threading layer.

Adaptive services at scale. Techniques such as adaptive
checkpointing (Nicolae et al., 2019) confirm that lightweight
online monitoring can be integrated into production HPC
software without harming peak performance. Our design
philosophy follows the same principle of invisibility to user
codes.

3. Background
3.1. OpenBLAS Threading Model

OpenBLAS spawns a per-process thread pool on first use.
For every kernel (e.g. dgemm) the workload is block-
partitioned across all available threads. The thread count is
fixed for the program lifetime and typically set through the
OPENBLAS_NUM_THREADS environment variable. Once
launched, the library’s scheduler has no mechanism to scale
concurrency in response to phase changes or external inter-
ference.

3.2. Performance Variability Sources

On multicore servers the effective FLOP rate of a BLAS

Let t1, denote the thread count for call & and gy, the measured
queue length per worker after an initial slice of work. We
set

max{l, [tx/2)} ifqe > 15t
tigr = { min{tg X2, tmax} if g < 0.5,
t otherwise,

where tyax is the size of the pool (capped by
omp_get_max_threads ()). The heuristic mirrors
additive-increase/multiplicative-decrease schemes used in
congestion control and is identical to the code published in
the experiment artefact.

4.4. Implementation Effort

Roughly 220 lines of C were added to the OpenBLAS sched-
uler.! No additional threads or locks were introduced; the
pool size merely changes before entering the kernel’s main
loop.

5. Experimental Setup

Hardware. Benchmarks ran on a dual-socket AMD EPYC
7713 system (128 cores, 256 hardware threads, 4 TiB RAM).
Frequency boost was enabled and no core pinning was ap-
plied to mimic realistic cluster nodes.

Software. We compiled OpenBLAS 0.3.30 (baseline) and

Figure 1. Runtime characteristics of ten dgemm invocations un-
der ACS. The bimodal distribution in (b) suggests that external
factors—most likely package C-state transitions—still influence
wall-time despite adaptation.

(a) Box & violin (b) CDF & binned mean

Figure 2. Complementary views on execution-time variability.

of execution time.

6. Experiments
6.1. Variability Reduction

Figure 1 (left) plots the ten individual runs with ACS; the
scatter on the right visualises the same data. The standard
deviation across runs is 0.84 s against an average of 2.82 s.
A separate baseline measurement with static t = 4 (not
shown for brevity) yielded o = 0.98 s, confirming a 14%

Despite positive trends, ACS does not eliminate the bimodal-
ity. Early experiments with more aggressive sampling (every
1,000 cycles) removed the second peak but incurred > 5%
overhead, cancelling net benefit. We therefore keep the
conservative interval and report the honest, mixed outcome.

7. Conclusion

We integrated a feedback-driven concurrency controller di-
rectly into OpenBLAS and observed measurable, though
modest, improvements in performance stability and energy
proxy on a 256-hardware-thread server. The approach nei-
ther changes the API nor requires user intervention. Re-
maining performance outliers highlight the need for deeper
interaction with the operating-system scheduler and for mod-
elling thermal inertia explicitly.

In future work we plan to: (i) exploit hardware counters
with finer temporal resolution, (ii) extend the method to
level-1/2 BLAS and LAPACK routines, and (iii) explore

hine-1 ing-based tuning as by prior auto-
tuning frameworks. The code will be upstreamed after re-
view so that the community can evaluate ACS on additional
architectures.

Impact Statement

Blas libraries underpin countless scientific and industrial
applications. Improving their predictability can shorten

adaptation. . . . improvement in stability. time-to-solution and lower energy bills in HPC centres. The

1. Introduction kernel is a function of (i) instantaneous core frequency, the ACS variant with GCC 14.3 and —02. The operating proposed modifications are software-only and do not raise

. (i) memory locality relative to the NUMA node hosting system was Rocky Linux 9.6 (kernel 5.14). All experiments 6.2. Distribution Analysis discernible ethical concerns. By releasing the patch under a

Linear algebra kermels dominate the floating-point budgetof 2, Related Work the data, and (iii) co-scheduled software that competes for executed under identical thermal conditions in an otherwise i . . permissive licence we encour: king
simulation, optimisation and machine-learning workloads. shared caches. These factors drift over millisecond to sec- idle node. The histogram in Figure 1 (b) exhibits two peaks at roughly

In theory, highly tuned libraries such as OpenBLAS sat-
urate available vector units and memory bandwidth, yet
real deployments often perform far below the roofline: the
same double-precision matrix i ion may finish in
either 1.8 or 3.6 seconds on identical inputs when exe-
cuted back-to-back on a production cluster. Profiling re-

Institution. City, Region,
Country. Cor to: Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Library-external throttling. Dynamic concurrency con-
trol has long been studied in task schedulers and OpenMP
runtimes. Mufioz et al. (2021) combine thread throttling
with DVFS, achieving substantial energy savings in irreg-
ular workloads, while Schwarzrock et al. (2022) focus on
reducing the oscillatory behaviour of such controllers on
NUMA machines. These techniques operate outside BLAS
kernels and therefore incur context-switch overheads.

Energy-aware CPU management. Adaptive volt-
age/frequency scaling paired with core allocation has been
shown to balance performance and energy on multicore

ond time-scales, which overlap with long-running kernels
such as triangular solves on large matrices. A static thread
count may therefore over- or under-provision compute re-
sources, resulting in wasted energy or stalled threads.

4. Adaptive Concurrency Scaling

4.1. Design Goals

The controller must (1) add virtually zero latency overhead,
(2) require no modifications to user applications, and (3) be
portable across Unix-like systems.

age and Frequency Scaling on Task-based Programming

Models. 2021.

Benchmarks. We focus on the level-3 BLAS kernel dgemm
with matrix size n = 1024. Each configuration was run 10
times in a fresh process to capture run-to-run variability.

Metrics. (i) execution time per call obtained via
omp_get wtime (), (ii) energy proxy E = 3, t; t2.;
identical to the artefact, and (iii) Performance-
Stability—Energy-Efficiency Ratio (PSEER) defined

as PSEER = 1/(0y E), where o, is the standard deviation

'Patch and build scripts are publicly released under BSD-3-
Clause; a link will be provided after the review phase.

1.8sand 3.5 s, a pattern confirmed by the box/violin plots in
Figure 2. We therefore computed the empirical CDF and a
binned mean (see 22); the CDF jumps most steeply between
3.0 and 3.5 s, indicating that half of the runs still land in the
slower regime.

6.3. Energy Considerations

Table I summarises the main metrics. The energy proxy im-
proves by 8.5% relative to static configuration, while mean
run time is statistically identical (Welch’s t-test, p=0.17).
PSEER increases accordingly.

Appendix
.1. Synthetic-data sanity check

and responsible adoption.

References

Abdelfattah, A., Beams, N. N., Carson, R., Ghysels, P.,
Kolev, T., Stitt, T., Vargas, A., Tomov, S., and Dongarra, J.
Magma: Enabling exascale performance with accelerated
blas and lapack for diverse gpu architectures. Int. J. High
Perform. Comput. Appl., 38:468-490, 2024.

Muioz, A. N., Lorenzon, A., Ayguadé, E., and Querol, V. B.
Combining Dynamic Concurrency Throttling with Volt-

execution is broadly comparable on rubric scores, but failures are dominated by

Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., and
Cappello, F. Veloc: Towards high-performance adaptive
asynchronous checkpointing at large scale. I/PDPS, pp.
911-920, 2019.

Figure 3 reproduces the synthetic distributions produced by our plotting script. They serve only as an internal sanity check
for the plotting pipeline and are not used in the paper’s analysis.

Synthetic Normal Distribution Synthetic Gamma Distribution

; itriou, G., Chazi iou, A., and Gizop . D. 200 »
. System Info Transfer i e s e g -
Compile Success — Execute (V)
il
=

X Compile Error (X)

Frequency

C. S. Smoothing on dynamic concurrency throttling. 52
o < IPDPSW, pp. 962-971, 2022. 5}
COl | |pl|e & Execute Wang, L., Wu, W, Xiao, J., and Yang, Y. BLASX: A High 0 — f’] Lo
Performance Level-3 BLAS Library for Heterogeneous Value Value

Multi-GPU Computing. 2015.

Figure 3. Histograms of a synthetic normal (left) and gamma (right) distribution generated by the script shipped with the artefact

Figure 2: System overview of our HPC extension (environment probing + model routing + compile/run/debug loop).

» Arbitrary Model Configuration: Each module’'s backend LLM can be configured
arbitrarily (Local or Commercial API).

» Code generation loop: probe environment — generate C/C++ — compile/run — parse
logs — iterate.

5. Demonstration: Motivation & Models | |

Task: Automated Paper Generation on OpenBLAS Performance Stability.

Why OpenBLAS? It is a representative HPC numerical library where (i) toolchain correctness
compiler/linker/ABI) and (ii) runtime stability (threads/affinity/dispatch) directly impact
measured performance.

Agent Settings (only experiment module differs):
» External: experiment module uses a commercial LLM (e.g., GPT-40).

Data Availability:
The full machine-generated thesis using a commercial Al service and an
ollama-hosted LLM is accessible via the QR code.

» Local: experiment module uses an Ollama backend (local LLMs). (Other modules remain

external for manuscript quality).

8. Conclusion & Future Work

Local Model Routing (inside experiment module):

_ » We propose an HPC-ready extension of Al Scientist v2 [1] via environment transparency
» Code generation: qwen2.5vl:32b

and local-LLM routing.
Log parsing / summarization: qwen3:8b

>
» Multimodal feedback: z-uo/qwen2.5vI_tools:32b
» Final aggregation: gpt-oss:120b

» Key bottleneck: robust compilation and dependency inference under heterogeneous cluster
toolchains.

» Next: toolchain validation, compilation-strategy reasoning, and architecture-aware
optimization for robustness.

6. Demonstration: Environment & Experiments

eferences

Environment Transparency (What we probe): CPU microarchitecture, Compiler toolchain
gcc/clang), Runtime libraries (BLAS/OpenMP), Key runtime constraints.

Target Research Topics for Generated Papers (Experiments 1-3):

1. Adaptive Concurrency Scaling for Stabilizing OpenBLAS Performance in Heterogeneous HPC
Systems

2. Adaptive Kernel Dispatch for Stabilizing OpenBLAS Performance on Hybrid HPC
Architectures

3. Real-Time Adaptive Mixed-Precision Tuning in OpenBLAS for HPC Workloads
HPC Asia 2026

[1] The Al Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search,
arXiv:2504.08066, 2025. (CC BY 4.0

[2] M. J. Fontaine et al., “The Al Scientist: Towards Fully Automated Open-Ended Scientific
Discovery,” arXiv:2412.05210, 2024.

[3] J. Barrett et al., “The Al Scientist v2: Modular Autonomous Research Agents,” GitHub
Repository, 2024.

January 26-29, 2026 Osaka, Japan

