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1. Introduction 2. Conventional Method: CPR

Recovery and ACID Properties Design

In modern key-value stores, systems must recover Concurrent Prefix Recovery (CPR) 1s a checkpointing technique designed
quickly after a crash to avoid Ziata loss and ensure to ensure Durability with minimal transaction interruption.
reliability. [t runs concurrently with transactions and follows

To achieve this, transactions follow the ACID properties. LI/ || four phases :

. . 1. PREPARE: Initializes metadata and assigns a global
A transaction 1s a group of operations that must succeed or checkpoint version.

fail together. 2. IN PROGRESS: Scans the in-memory log, copies

valid records to a stable version.
A e Isolation Durability 3. WAIT FLUSH: Flushes the stable version to disk
e (data integrity) (independent from (permanent once asynchronously.

others) completed) 4. REST: Finalizes metadata and cleans up.

CPR enables asynchronous checkpointing, allowing transactions to
proceed without pausing for the entire duration.

Checkpointing (CP) Challenge: Stable Copy Overhead

Checkpointing is the main mechanism used to achieve Durability. * Creating a stable copy incurs memory overhead.

It periodically saves in-memory data to persistent storage (disk). * The process of scanning and copying records also introduces locking cost.
When a crash occurs, the system restores from the latest

checkpoint, reducing recovery time. Memory
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If a crash occurs, —e

the system restores from the Start CP CP crash Restore CP How to reduce checkpointing overhead?
latest checkpoint.

3. Proposed Method: Persian 4. Results (YCSB-like Read Heavy)

Persian removes the stable copy phase of CPR. It directly scans
the in-memory log in the IN PROGRESS phase, collects valid
records, and flushes them to storage 1n parallel during
WAIT FLUSH.

This approach avoids locking and reduces memory usage.
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Persian reconstructs the version-v by scanning the log prefix and filtering records by version.

WAIT FLUSH As the thread gets higher...

Throughput improves by up to 2x higher

Persian scales better under read-heavy loads,
while CPR is slowed down by copying.

Memory

5. Conclusion

Thread 2

Thread N We proposed Persian to reduce CPR’s overhead 1n read-heavy,

. high-concurrency workloads.
Hypothesis By eliminating stable copies and flushing in parallel, Persian

Persian performs well under read-heavy workloads. avoids locking, achieving up to 2x higher throughput under

read-dominant scenarios.
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