
Persian: A fast checkpointing
based on concurrent prefix recovery

In modern key-value stores, systems must recover
quickly after a crash to avoid data loss and ensure
reliability.

To achieve this, transactions follow the ACID properties.
A transaction is a group of operations that must succeed or
fail together.

1. Introduction

Checkpointing is the main mechanism used to achieve Durability.
It periodically saves in-memory data to persistent storage (disk).

When a crash occurs, the system restores from the latest
checkpoint, reducing recovery time.

Checkpointing (CP)

Recovery and ACID Properties

4. Results (YCSB-like Read Heavy)

5. Conclusion

We proposed Persian to reduce CPR’s overhead in read-heavy,
high-concurrency workloads.

By eliminating stable copies and flushing in parallel, Persian
avoids locking, achieving up to 2x higher throughput under
read-dominant scenarios.

As the thread gets higher…
Throughput improves by up to 2× higher

Lijia Jiang, Hideyuki Kawashima / Keio University

Acknowledgment
This paper is based on results obtained from the project "Research and Development Project of the Enhanced Infrastructures for
Post-5G Information and Communication Systems (JPNP20017) " and JPNP16007 commissioned by the New Energy and
Industrial Technology Development Organization (NEDO), and from JSPS KAKENHI Grant Number 25H00446, and from JST
CREST Grant Number JPMJCR24R4 and from SECOM Science and Technology Foundation and JST COI-NEXT SQAI
(JPMJPF2221), JST Moonshot R&D Grant Number JPMJMS2215.

Atomicity
(all-or-nothing)

Consistency
(data integrity)

Isolation
(independent from

others)

2. Conventional Method: CPR

Concurrent Prefix Recovery (CPR) is a checkpointing technique designed
to ensure Durability with minimal transaction interruption.

Research Question

How to reduce checkpointing overhead?

3. Proposed Method: Persian

Hypothesis
Persian performs well under read-heavy workloads.

Persian removes the stable copy phase of CPR. It directly scans
the in-memory log in the IN_PROGRESS phase, collects valid
records, and flushes them to storage in parallel during
WAIT_FLUSH.

This approach avoids locking and reduces memory usage.

Challenge: Stable Copy Overhead

Design

Persian scales better under read-heavy loads,
while CPR is slowed down by copying.

Memory Disk

every few seconds
 (save checkpoint)

If a crash occurs,
the system restores from the

latest checkpoint.

⬛────●────●────✖────◯───
─●────
 Start CP CP crash Restore CP

REST

PREPA
RE

WAIT_
FLUSH

IN_
PROGR

ESS

Memory
Record

Live Stable

IN_PROGRESS: Copy

Disk
WAIT_FLUSH: Flush

It runs concurrently with transactions and follows
four phases :
1. PREPARE: Initializes metadata and assigns a global
checkpoint version.
2. IN_PROGRESS: Scans the in-memory log, copies
valid records to a stable version.
3. WAIT_FLUSH: Flushes the stable version to disk
asynchronously.
4. REST: Finalizes metadata and cleans up.

• Creating a stable copy incurs memory overhead.
• The process of scanning and copying records also introduces locking cost.

Workloads:
90% Read /
10% Write

Record

Live Stable

Memory

Record 2

Memory

Disk
Thread 1

Thread 2

Thread N

Durability
(permanent once

completed)

Phase CPR Persian

IN_PROGRESS Stable Copy

Eliminate Stable Copy
⇨ Save Memory
⇨ Remove Locks (Less Contention)
⇨Version Filter (v-only scan)
⇨ Prepare ensures consistency

WAIT_FLUSH Single-thread
Execution

Multi-thread Execution
⇨ Fast Flush & Scalable

CPR enables asynchronous checkpointing, allowing transactions to
proceed without pausing for the entire duration.

Persian reconstructs the version-v by scanning the log prefix and filtering records by version.

