Persian: A ftast checkpointing

based on concurrent prefix recovery
Lijia Jiang, Hideyuki Kawashima / Keio University

1. Introduction 2. Conventional Method: CPR

Recovery and ACID Properties Design

In modern key-value stores, systems must recover Concurrent Prefix Recovery (CPR) 1s a checkpointing technique designed
quickly after a crash to avoid Ziata loss and ensure to ensure Durability with minimal transaction interruption.
reliability. [t runs concurrently with transactions and follows

To achieve this, transactions follow the ACID properties. LI/ || four phases :

. . 1. PREPARE: Initializes metadata and assigns a global
A transaction 1s a group of operations that must succeed or checkpoint version.

fail together. 2. IN PROGRESS: Scans the in-memory log, copies

valid records to a stable version.
A e Isolation Durability 3. WAIT FLUSH: Flushes the stable version to disk
e (data integrity) (independent from (permanent once asynchronously.

others) completed) 4. REST: Finalizes metadata and cleans up.

CPR enables asynchronous checkpointing, allowing transactions to
proceed without pausing for the entire duration.

Checkpointing (CP) Challenge: Stable Copy Overhead

Checkpointing is the main mechanism used to achieve Durability. * Creating a stable copy incurs memory overhead.

It periodically saves in-memory data to persistent storage (disk). * The process of scanning and copying records also introduces locking cost.
When a crash occurs, the system restores from the latest

checkpoint, reducing recovery time. Memory

Record 1
Live ¥ Stable) -

WAIT_ FLUSH: Flush

every few seconds IN_ PROGRESS: Copy
(save checkpoint)

>

Memory B . . w0 Research Question

If a crash occurs, —e

the system restores from the Start CP CP crash Restore CP How to reduce checkpointing overhead?
latest checkpoint.

3. Proposed Method: Persian 4. Results (YCSB-like Read Heavy)

Persian removes the stable copy phase of CPR. It directly scans
the in-memory log in the IN PROGRESS phase, collects valid
records, and flushes them to storage 1n parallel during
WAIT FLUSH.

This approach avoids locking and reduces memory usage.

1e7 Throughput Comparison under R90/W10 Workload

-8— (PR (Baseline)
1 —m— Persian

(o))}

on
1

NN
1

Persian

N
1

Eliminate Stable Copy Workloads:

> Save Memory 90% Read /
NI NOIE1R NN Stable Copy > Remove Locks (Less Contention) 10% Write

~>Version Filter (v-only scan) 3
~ Prepare ensures consistency Thread Count

Throughput (M ops/sec)
w

—
1

o
1

Single-thread Multi-thread Execution
Execution > Fast Flush & Scalable

Memory 5
-)

Staxble Record x 2 /

Persian reconstructs the version-v by scanning the log prefix and filtering records by version.

WAIT FLUSH As the thread gets higher...

Throughput improves by up to 2x higher

Persian scales better under read-heavy loads,
while CPR is slowed down by copying.

Memory

5. Conclusion

Thread 2

Thread N We proposed Persian to reduce CPR’s overhead 1n read-heavy,

. high-concurrency workloads.
Hypothesis By eliminating stable copies and flushing in parallel, Persian

Persian performs well under read-heavy workloads. avoids locking, achieving up to 2x higher throughput under

read-dominant scenarios.

Acknowledgment

This paper is based on results obtained from the project "Research and Development Project of the Enhanced Infrastructures for
Post-5G Information and Communication Systems (JPNP20017) " and JPNP16007 commissioned by the New Energy and
Industrial Technology Development Organization (NEDO), and from JSPS KAKENHI Grant Number 25H00446, and from JST
CREST Grant Number JPMJCR24R4 and from SECOM Science and Technology Foundation and JST COI-NEXT SQAI
(JPMJPF2221), JST Moonshot R&D Grant Number JPMJMS2215.

