
Persian: A fast checkpointing
based on concurrent prefix recovery

In modern key-value stores, systems must recover 
quickly after a crash to avoid data loss and ensure 
reliability.

To achieve this, transactions follow the ACID properties.
A transaction is a group of operations that must succeed or 
fail together.

1. Introduction

Checkpointing is the main mechanism used to achieve  Durability. 
It periodically saves in-memory data to persistent storage (disk).

When a crash occurs, the system restores from the latest 
checkpoint, reducing recovery time.

Checkpointing (CP)

Recovery and ACID Properties

4. Results (YCSB-like Read Heavy)

5. Conclusion

We proposed Persian to reduce CPR’s overhead in read-heavy, 
high-concurrency workloads.

By eliminating stable copies and flushing in parallel, Persian 
avoids locking, achieving up to 2x higher throughput under 
read-dominant scenarios.

As the thread gets higher…
Throughput improves by up to 2× higher
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2. Conventional Method: CPR

Concurrent Prefix Recovery (CPR) is a checkpointing technique designed 
to ensure Durability with minimal transaction interruption. 

Research Question

How to reduce checkpointing overhead?

3. Proposed Method: Persian

Hypothesis
Persian performs well under read-heavy workloads.

Persian removes the stable copy phase of CPR. It directly scans 
the in-memory log in the IN_PROGRESS  phase, collects valid 
records, and flushes them to storage in parallel during 
WAIT_FLUSH.

This approach avoids locking and reduces memory usage.

Challenge: Stable Copy Overhead

Design

Persian scales better under read-heavy loads, 
while CPR is slowed down by copying.
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It runs concurrently with transactions and follows 
four phases :
1. PREPARE: Initializes metadata and assigns a global 
checkpoint version.
2. IN_PROGRESS: Scans the in-memory log, copies 
valid records to a stable version.
3. WAIT_FLUSH: Flushes the stable version to disk 
asynchronously.
4. REST: Finalizes metadata and cleans up.

• Creating a stable copy incurs memory overhead.
• The process of scanning and copying records also introduces locking cost.

Workloads: 
90% Read / 
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IN_PROGRESS Stable Copy

Eliminate Stable Copy
⇨ Save Memory
⇨ Remove Locks (Less Contention)
⇨Version Filter (v-only scan)
⇨ Prepare ensures consistency

WAIT_FLUSH Single-thread 
Execution

Multi-thread Execution
⇨ Fast Flush & Scalable

CPR enables asynchronous checkpointing, allowing transactions to 
proceed without pausing for the entire duration.

Persian reconstructs the version-v by scanning the log prefix and filtering records by version.


