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Abstract

• Numerical ocean models are key for climate prediction and marine resource studies.
• We developed the global ocean model COCO with an OpenACC GPU implementation compatible 

with CPUs.
• Performance was tested on the Miyabi Supercomputer (GPU: NVIDIA GH200, CPU: Intel Xeon MAX 

9480).
• A 0.17deg global grid experiment showed up to 2.9 times speedup in tracer calculations on GPUs.
• Roofline analysis found GPU performance limited by memory bandwidth, suggesting kernel-level 

optimizations as future work.

• A tripolar grid system【2】 avoids pole convergence by placing 
poles over land (Fig. 1).

• Data arrays are mainly 3D, with systematic access patterns 
across neighboring elements.

I

J Why OpenACC?
• Many COCO users are oceanographers, not HPC experts
• Accessibility is the top priority
• Low development cost, single CPU–GPU code base
• OpenMP-like style, familiar and user-friendly

Time stepping 
loop (main loop)

Initial data input

Surface flux (2D)

Sea ice (3D:2DxNIC)

Baroclinic (3D)

Barotropic (2D)

Tracer (3D)

Output for next run

• COCO implemented and evaluated on the Miyabi 
Supercomputer, operated by JCAHPC (University of Tokyo 
& University of Tsukuba)

• Miyabi-G: GPU-based (NVIDIA GH200 Grace-Hopper)
• Miya-C: CPU-based (Intel Xeon MAX 9480)
• Performance: 80.1 PFLOPS (fp64).

• Ocean models involves 
many processes

• Minimize CPU–GPU 
data transfer is 
necessary

• GPU acceleration 
requires implementing 
nearly all loops

• OpenACC enables low-
cost approach for 
ocean models.

Model calculation 
processes

Supercomputer Miyabi

Miyabi-G Miyabi-C
Processor NVIDIA GH200 Intel Xeon 

MAX 9480
Theoretical 
calculating 

performance

3.5TFLOPS（Grace CPU）
6.8TFLOPS

67TFLOPS（Hopper GPU）

Memory bandwidth
512GB/s（Grace CPU）

3.2TB/s4.0TB/S（Hopper GPU）

Memory capacity 120GB（Grace CPU） 64GiB96GB（Hopper GPU）

Specification of Miyabi-G/C

“COCO” ice-ocean coupled model

Grid structure of COCO Supercomputer Miyabi

Implementation of ocean model to GPUs with “the basic OpenACC style”

!$acc data copy(fz)
!$acc data copyin(mask, kpa, a, idz)
!$acc kernels

DO j=1, jsize
DO i=1, isize
!$acc loop seq

DO k=0, ksize
fz(i,j,k) = - mask(i,j,k) * mask(i,j,k+1) *   &

( kpa(i,j,k) + kpa(i,j,k+1)) *   &
( a(i,j,k+1) - a(i,j,k)) * idz(k)

END DO
END DO

END DO
!$acc end kernels
!$acc end data
!$acc end data

Example of implementation with the 
basic OpenACC style

• Inserting basic OpenACC directives
• Kernels or parallel directives

• Basically, inserted into the outermost of nested loops
• loop independent/seq directives

• Inserted according to the loop algorithms
• Not specify any quantitative configurations for GPU threads

• Gang or vector clauses are not applied, leaving the 
compiler’s decision.

• Data directives
• Remove redundant data transfer between CPU and GPU

• Minimize modification of original CPU code as possible
• Ideal: If you remove the lines including “!$acc” automatically, 

you can get the code essentially the same as the original
• Out of 417 loops, only 9 loops of the advection–diffusion equation 

could not be accelerated with the above OpenACC basic 
implementation and required algorithmic modifications.

3-D parallelization of tracer equations

do k = kstr, kend : vertical axis, parallelizable
do ij = ijstr, ijend : horizontal axis, sequential

​    if ( uv(ij, k) .gt. 0.d0 ) then
sm(ij , k, n) = sm(ij , k, n) + fm(ij-1, k)

else
sm(ij-1, k, n) = sm(ij-1, k, n) + fm(ij-1, k)

end if
end do

end do

1-D parallel code (ASIS) 

In the ij-axis loop, memory access 
during the TRUE condition conflicts 
with that during the ELSE condition.

• Advection–diffusion equation discretized with upwind differencing
• Original ASIS code: only vertical direction parallelized → insufficient GPU parallelism
• Algorithm modified: horizontal loops split into positive/negative upwind components
• Enables parallelization in horizontal direction
• Loop iterations double, but GPU thread parallelism yields higher speedup

do k = kstr, kend : vertical axis, parallelizable
do ij = ijstr, ijend : horizontal axis, parallelizable

​    if ( uv(ij , k) .gt. 0.d0 ) then
sm(ij, k, n) = sm(ij, k, n) + fm(ij-1, k)

end if
end do

​  do ij = ijstr-1, ijend-1 : horizontal axis, 
parallelizable

if ( uv(ij+1, k) .le. 0.d0 ) then
sm(ij, k, n) = sm(ij, k, n) + fm(ij , k)

end if
end do

end do

3-D parallel code (TUNED)

Experiment and Evaluation

• Idealistic and systematic forcing assuming baloclinic
instability

• GPU vs. CPU performance compared using a realistic 
global ocean experiment

• Resolution: 0.17 degree with [2160, 1680, 63] grid 
points, divided into 32 areas

• Evaluated on 32 GPUs or CPUs of the Miyabi-G: GPU 
(NVIDIA GH200) and Miyabi-C: CPU (Intel Xeon MAX 
9480)

• Most components faster on GPUs
• TRACER: 2.9 times speedup (largest gain, due to 

algorithmic modifications)
• BRTRO: slower on GPUs, limited parallelism from 2D 

values

Performance of CPUs and GPUs on each 
component

Roofline Analysis
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Memory bound

Computation 
bound

Roofline model analysis of the execution results on CPU

Horizontal axis: arithmetic intensity; Vertical axis: computational performance (GFLOPS).

• Acceleration ratio of GPU is below theoretical peak ratio
• Roofline analysis performed to identify limiting factors
• Most CPU loops memory-bound
• GPU speedup limited by memory bandwidth

• In our ocean model COCO, most computational loops showed low arithmetic intensity
• Memory bandwidth had a significant impact on performance
• Future work: modify algorithms developed for CPU execution model to align with GPU 

execution model
• Key directions:

• Increase arithmetic intensity (e.g., temporal blocking)
• Tune GPU thread configurations
• Leverage GPU registers via optimized workload allocation or loop exchange
• Apply cache optimizations following GPU execution model

• Goal: fully exploit the high computational capability of GPUs

Discussion and future work
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• The model is an ice–ocean coupled system 
(COCO)【1】.

• COCO solves 3D Navier–Stokes equations with 
Coriolis force under Boussinesq and hydrostatic 
approximations.

• Temperature and salinity fields are computed 
using the advection–diffusion equation.

Model calculation processes


	スライド番号 1

