
Implementation of a Numerical Ocean Model Using Multiple GPUs in a
GPU-CPU Heterogeneous Environment

Takateru Yamagishi(1) Masao Kurogi(2) Takao Kawasaki(3) Yoshimasa Matsumura(4) Hiroyasu Hasumi(5)
1: Research Organization for Information Science and Technology, takateru.yamagishi@rist.or.jp 2: Japan Agency for Marine-Earth Science and Technology, m_kurogi@jamstec.go.jp 3: Japan Agency for

Marine-Earth Science and Technology, t_kawasaki@jamstec.go.jp4: National Institute for Environmental Studies, matsumura.yoshimasa@nies.go.jp 5: Atmosphere and Ocean Research Institute, The
University of Tokyo, hasumi@aori.u-tokyo.ac.jp

Abstract

• Numerical ocean models are key for climate prediction and marine resource studies.
• We developed the global ocean model COCO with an OpenACC GPU implementation compatible

with CPUs.
• Performance was tested on the Miyabi Supercomputer (GPU: NVIDIA GH200, CPU: Intel Xeon MAX

9480).
• A 0.17deg global grid experiment showed up to 2.9 times speedup in tracer calculations on GPUs.
• Roofline analysis found GPU performance limited by memory bandwidth, suggesting kernel-level

optimizations as future work.

• A tripolar grid system【2】 avoids pole convergence by placing
poles over land (Fig. 1).

• Data arrays are mainly 3D, with systematic access patterns
across neighboring elements.

I

J Why OpenACC?
• Many COCO users are oceanographers, not HPC experts
• Accessibility is the top priority
• Low development cost, single CPU–GPU code base
• OpenMP-like style, familiar and user-friendly

Time stepping
loop (main loop)

Initial data input

Surface flux (2D)

Sea ice (3D:2DxNIC)

Baroclinic (3D)

Barotropic (2D)

Tracer (3D)

Output for next run

• COCO implemented and evaluated on the Miyabi
Supercomputer, operated by JCAHPC (University of Tokyo
& University of Tsukuba)

• Miyabi-G: GPU-based (NVIDIA GH200 Grace-Hopper)
• Miya-C: CPU-based (Intel Xeon MAX 9480)
• Performance: 80.1 PFLOPS (fp64).

• Ocean models involves
many processes

• Minimize CPU–GPU
data transfer is
necessary

• GPU acceleration
requires implementing
nearly all loops

• OpenACC enables low-
cost approach for
ocean models.

Model calculation
processes

Supercomputer Miyabi

Miyabi-G Miyabi-C
Processor NVIDIA GH200 Intel Xeon

MAX 9480
Theoretical
calculating

performance

3.5TFLOPS（Grace CPU）
6.8TFLOPS

67TFLOPS（Hopper GPU）

Memory bandwidth
512GB/s（Grace CPU）

3.2TB/s4.0TB/S（Hopper GPU）

Memory capacity 120GB（Grace CPU） 64GiB96GB（Hopper GPU）

Specification of Miyabi-G/C

“COCO” ice-ocean coupled model

Grid structure of COCO Supercomputer Miyabi

Implementation of ocean model to GPUs with “the basic OpenACC style”

!$acc data copy(fz)
!$acc data copyin(mask, kpa, a, idz)
!$acc kernels

DO j=1, jsize
DO i=1, isize
!$acc loop seq

DO k=0, ksize
fz(i,j,k) = - mask(i,j,k) * mask(i,j,k+1) * &

(kpa(i,j,k) + kpa(i,j,k+1)) * &
(a(i,j,k+1) - a(i,j,k)) * idz(k)

END DO
END DO

END DO
!$acc end kernels
!$acc end data
!$acc end data

Example of implementation with the
basic OpenACC style

• Inserting basic OpenACC directives
• Kernels or parallel directives

• Basically, inserted into the outermost of nested loops
• loop independent/seq directives

• Inserted according to the loop algorithms
• Not specify any quantitative configurations for GPU threads

• Gang or vector clauses are not applied, leaving the
compiler’s decision.

• Data directives
• Remove redundant data transfer between CPU and GPU

• Minimize modification of original CPU code as possible
• Ideal: If you remove the lines including “!$acc” automatically,

you can get the code essentially the same as the original
• Out of 417 loops, only 9 loops of the advection–diffusion equation

could not be accelerated with the above OpenACC basic
implementation and required algorithmic modifications.

3-D parallelization of tracer equations

do k = kstr, kend : vertical axis, parallelizable
do ij = ijstr, ijend : horizontal axis, sequential

​ if (uv(ij, k) .gt. 0.d0) then
sm(ij , k, n) = sm(ij , k, n) + fm(ij-1, k)

else
sm(ij-1, k, n) = sm(ij-1, k, n) + fm(ij-1, k)

end if
end do

end do

1-D parallel code (ASIS)

In the ij-axis loop, memory access
during the TRUE condition conflicts
with that during the ELSE condition.

• Advection–diffusion equation discretized with upwind differencing
• Original ASIS code: only vertical direction parallelized → insufficient GPU parallelism
• Algorithm modified: horizontal loops split into positive/negative upwind components
• Enables parallelization in horizontal direction
• Loop iterations double, but GPU thread parallelism yields higher speedup

do k = kstr, kend : vertical axis, parallelizable
do ij = ijstr, ijend : horizontal axis, parallelizable

​ if (uv(ij , k) .gt. 0.d0) then
sm(ij, k, n) = sm(ij, k, n) + fm(ij-1, k)

end if
end do

​ do ij = ijstr-1, ijend-1 : horizontal axis,
parallelizable

if (uv(ij+1, k) .le. 0.d0) then
sm(ij, k, n) = sm(ij, k, n) + fm(ij , k)

end if
end do

end do

3-D parallel code (TUNED)

Experiment and Evaluation

• Idealistic and systematic forcing assuming baloclinic
instability

• GPU vs. CPU performance compared using a realistic
global ocean experiment

• Resolution: 0.17 degree with [2160, 1680, 63] grid
points, divided into 32 areas

• Evaluated on 32 GPUs or CPUs of the Miyabi-G: GPU
(NVIDIA GH200) and Miyabi-C: CPU (Intel Xeon MAX
9480)

• Most components faster on GPUs
• TRACER: 2.9 times speedup (largest gain, due to

algorithmic modifications)
• BRTRO: slower on GPUs, limited parallelism from 2D

values

Performance of CPUs and GPUs on each
component

Roofline Analysis

1.00e-7

1.00e-6

1.00e-5

0.0001

0.001

0.01

0.1

1

10

100

1.00e-6 1.00e-5 0.0001 0.001 0.01 0.1 1 10

DP Vector FMA Peak: 79.49 GFLOPS

ScalarAddPeak: 5.15 GFLOPS

DP Vector AddPeak: 41.4 GFLOPS

G
F

L
O

P
S

FLOP/Byte(Arithmetic Intensity)

100

10

1

0.1

0.01

0.001

1e-5

1e-6

1e-7

1e-4

0.1 1 100.010.0011e-41e-51e-6

Memory bound

Computation
bound

Roofline model analysis of the execution results on CPU

Horizontal axis: arithmetic intensity; Vertical axis: computational performance (GFLOPS).

• Acceleration ratio of GPU is below theoretical peak ratio
• Roofline analysis performed to identify limiting factors
• Most CPU loops memory-bound
• GPU speedup limited by memory bandwidth

• In our ocean model COCO, most computational loops showed low arithmetic intensity
• Memory bandwidth had a significant impact on performance
• Future work: modify algorithms developed for CPU execution model to align with GPU

execution model
• Key directions:

• Increase arithmetic intensity (e.g., temporal blocking)
• Tune GPU thread configurations
• Leverage GPU registers via optimized workload allocation or loop exchange
• Apply cache optimizations following GPU execution model

• Goal: fully exploit the high computational capability of GPUs

Discussion and future work

[1] H. Hasumi (2006). CCSR Ocean Component Model (COCO) version 4.0, Center for Climate System
Research Rep., 25.

[2] R. J. Murray (1996). Explicit generation of orthogonal grids for ocean models, J. Comput. Phys., 126,
251–273.

References

• The model is an ice–ocean coupled system
(COCO)【1】.

• COCO solves 3D Navier–Stokes equations with
Coriolis force under Boussinesq and hydrostatic
approximations.

• Temperature and salinity fields are computed
using the advection–diffusion equation.

Model calculation processes

	スライド番号 1

