Implementation of a Numerical Ocean Model Using Multiple GPUs in a

GPU-CPU Heterogeneous Environment
Takateru Yamagishi(1l) Masao Kurogi(2) Takao Kawasaki(3) Yoshimasa Matsumura(4) Hiroyasu Hasumi(5)

1: Research Organization for Information Science and Technology, takateru.yamagishi@rist.or.jo 2:Japan Agency for Marine-Earth Science and Technology, m kurogi@jamstec.go.jp 3:Japan Agency for
Marine-Earth Science and Technology, t kawasaki@jamstec.go.jp4: National Institute for Environmental Studies, matsumura.yoshimasa@nies.qgo.jp 5: Atmosphere and Ocean Research Institute, The
University of Tokyo, hasumi@aori.u-tokyo.ac.jp

2013 09/13 00:30

* Numerical ocean models are key for climate prediction and marine resource studies. * The model is an ice—ocean coupled system
* We developed the global ocean model COCO with an OpenACC GPU implementation compatible (coco)[1].

with CPUs. * COCO solves 3D Navier—Stokes equations with
* Performance was tested on the Miyabi Supercomputer (GPU: NVIDIA GH200, CPU: Intel Xeon MAX Coriolis force under Boussinesq and hydrostatic

9480). approximations.
* A0.17deg global grid experiment showed up to 2.9 times speedup in tracer calculations on GPUs. « Temperature and salinity fields are computed
* Roofline analysis found GPU performance limited by memory bandwidth, suggesting kernel-level using the advection—diffusion equation.

optimizations as future work.

. A tlrlpolar glrldjyﬁ:t.eml[)Z] avoids pole convergence by placing Model calculation = . Ocenn ol e Supercomputer Miyabi
oles over lan 1. 1). rocesses
. IE))ata arrays are mag;nly 3D, with systematic access patterns P > many processes * COCO implemented and evaluated on the Miyabi
across neighboring eleme’nts. Surface flux (2D) e Minimize CPU-GPU Supercomputer, operated by JCAHPC (University of Tokyo
data transfer is & University of Tsukuba)

Sea ice (3D:2DxNIC)

Time stepping necessary * Miyabi-G: GPU-based (NVIDIA GH200 Grace-Hopper)
loop (main loop) Baroclinic (3D) GPU acceleration ° Miya'C: CPU-based (Intel Xeon MAX 9480)
requires imp|ementing * Performance: 80.1 PFLOPS (fp64)
erotropic (2 nearly all loops
Specification of Miyabi-G/C
Tracer (3D) * OpenACC enables low- P Y /
cost approach for Miyabi-G Miyabi-C
Intel Xeon
ocean models. Processor NVIDIA GH200 MAX 9480
Output for next run Theoretical | 3.5TFLOPS (Grace CPU)
lculati 8TFLOP
Why OpenACC? pceifgfniglgcge 67TFLOPS (Hopper GPU) 0.8TFLOPS
* Many COCO gsers are oc.ear?ographers, not HPC experts y . 512GB/s (Grace CPU) i
e Accessibility is the top pr.lorlty emory banawi 4.0TB/S (Hopper GPU) : S
* Low development cost, single CPU-GPU code base ¥ | 120GB (Grace CPU) .
e OpenMP-like style, familiar and user-friendly emory capacity | —g-~p (Hopper GPU) |
* Inserting basic OpenACC directives Example of implementation with the » Advection—diffusion equation discretized with upwind differencing
* Kernels or parallel directives basic OpenACC style » Original ASIS code: only vertical direction parallelized = insufficient GPU parallelism
* Basically, inserted into the outermost of nested loops $acc data copy(fz) » Algorithm modified: horizontal loops split into positive/negative upwind components
¢ |00p independent/seq directives ISacc data copyin(mask, kpa, a, idz) e Enables para”e“zation in horizontal direction
* Inserted according to the loop algorithms [;i)ajc_clk‘;;”zzls e Loop iterations double, but GPU thread parallelism yields higher speedup
* Not specify any quantitative configurations for GPU threads DO =1, isize 1-D parallel code (ASIS) 3-D parallel code (TUNED)
* Gang or vector clauses are not applied, leaving the ISacc loop seq . . .
o .. . do k = kstr, kend : vertical axis, parallelizable
compiler’s decision. DO k=0, ksize do i = iistr iiend * horizontal axi lelizabl
. S f2(i,j,k) = - mask(i,j,k) * mask(i,j,k+1) * & do k = kstr, kend : vertical axis, parallelizable O 1) =1J5tr, Jend . horizontal axis, paralielizabie
Data directives - A L)) : if (uv(ij , k) .gt. 0.d0) then
e R dund d fer b CPU and GPU (kpa(i,j,k) + kpa(i,j,k+1)) * & do ij = ijstr, ijend : horizontal axis, sequential Al KD -BLU.C 3
_+ Remove redundant data transter between LFU an (a(ik+1) - aijk)) * idz(k) i (uv(ij, k) .gt. 0.d0) then smli, k, n) = sm(ij, k, n) +fm(ij-1, k
* Minimize modification of original CPU code as possible END DO sm(ij , k n)=sm(ij , k n)+fm(ij-1, k) end if
 |deal: If you remove the lines including “!Sacc” automatically, END DO else e”O-'-dO_.) . .
you can get the code essentially the same as the original END DO sm(ij-1, k, n) = sm(ij-1, k, n) + fm(ij-1, k) do IJ = ijstr-1, ijend-1 : horizontal axis,
. e . ISacc end kernels Jif parallelizable
e QOutof 417 loops, only 9 loops of the advection—diffusion equation 1Sacc end data end | i (uv(ii+L, k) .le. 0.d0) then
could not be accelerated with the above OpenACC basic 1Sacc end data end do | In the ij-axis loop, memory access 3 Jk S) el K
implementation and required algorithmic modifications end do | during the TRUE condition conflicts smll, k, n) = smii, k, n) + (i, k)
' with that during the ELSE condition. end if
end do
end do

 |dealistic and systematic forcing assuming baloclinic . _ _
instability Performance of CPUs and GPUs on each Roofline model analysis of the execution results on CPU
. : L ®
GPU vs. CPU perfor.mance compared using a realistic component S DP Vector FMA Peak: 79.49 GFL OPS
global ocean experiment 5 ector Addreak: 4.4 LFL0
* Resolution: 0.17 degree with [2160, 1680, 63] grid CPU GPU | ratio of speedup 1019 Scalard#peak: 5.15 GFLOPS
points, divided into 32 areas COEFF 1.10 0.40 2.7 1| = :
* Evaluated on 32 GPUs or CPUs of the Miyabi-G: GPU BRCLI 0.23 0.08 2.7 01 *o %
(NVIDIA GH200) and Miyabi-C: CPU (Intel Xeon MAX BRTRO 0.15 0.24 0.6 :r
0.01
9430) TDIAG 0.04 0.02 2.3 .
* Most components faster on GPUs TRACER 147 050 59 0.001 o
. . . . : : ' o Computation
TRAC.ER. 2..9 tlmc.esj spgedup (largest gain, due to VDIAG 0.09 0.04 55 tes | EL%QQ o bound
algorithmic modifications) SR = .
. . TOTAL 3.03 1.25 2.4 les P>
e BRTRO: slower on GPUs, limited parallelism from 2D 0%
values Elapsed time, unit: second o6
Memory bound
le-7 | ®
FLOP/Bvte(Arithmetic Intensitv)
le-6 le-5 le-4 0.001 0.01 0.1 1 10

Horizontal axis: arithmetic intensity; Vertical axis: computational performance (GFLOPS).

: : . : * Acceleration ratio of GPU is below theoretical peak ratio
* In our ocean model COCO, most computational loops showed low arithmetic intensity + Roofline analysis performed to identify Iimitingpfactors

* Memory bandwidth had a significant impact on performance Most CPU loops memory-bound
* Future work: modify algorithms developed for CPU execution model to aligh with GPU « GPU speedup limited by memory bandwidth
execution model

* Key directions:
* Increase arithmetic intensity (e.g., temporal blocking)
 Tune GPU thread configurations

* Leverage GPU registers via optimized workload allocation or loop exchange [1] H. Hasumi (2006). CCSR Ocean Component Model (COCO) version 4.0, Center for Climate System
* Apply cache optimizations following GPU execution model Research Rep., 25.

. . : ol 2] R.J. Murray (1996). Explicit generation of orthogonal grids for ocean models, J. Comput. Phys., 126,
* Goal: fully exploit the high computational capability of GPUs 2] 51973 y (1996). Explicit g gonalg put. Phy

	スライド番号 1

