
Hila: Portable Lattice Field Theory Code Generator Enabling
Advanced GPU Communication Through MPI and NCCL/RCCL

Aaron Haarti† & Kari Rummukainen
Computational Field Theory group, University of Helsinki

Hila: Portable Lattice Field Theory Code Generator Enabling
Advanced GPU Communication Through MPI and NCCL/RCCL

Aaron Haarti† & Kari Rummukainen
Computational Field Theory group, University of Helsinki

Background & Objectives

The Exascale Landscape
• Modern HPC is dominated by Arm and heterogeneous GPU architectures.
• Porting legacy Lattice Field Theory (LFT) code is a bottleneck for research.
• Goal: Achieve high performance without sacrificing code portability.

The hila Pre-processor
• Transforms high-level mathematical representations into architecture-specific code.
• Supports: x86, Arm, OpenMP, AVX, CUDA, HIP, and MPI.
• Designed for easy integration of new hardware architectures.

Research Objectives
• Integrate NCCL/RCCL for multi-GPU point-to-point communication.
• Implement and evaluate computation-communication overlap.
• Benchmark against GPU-Aware MPI implementations.
• Evaluate performance for general stencil point-to-point communication.

The hila Pre-processor

We design an LFT code generator which maps mathematical expressions to optimized C++ code.
For example, the Wilson gauge action:

Sg[U(x)] =
β

N ∑
x,µ<ν

ℜTr[1− Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)†Uν(x)†].

This expression is a vectorizable operation at and a reduction over all lattice points. Hila captures
this structure via a DSL:

GaugeField<SU<N, double>> U;
... // initialize and update gauge field
Reduction<double> plaq = 0;
foralldir(mu) foralldir(nu) if (mu < nu) {

onsites(ALL) {
SU<N,double> U_loop = U[mu][X]*U[nu][X + mu]*U[mu][X + nu].dagger()*U[nu][X].dagger();
plaq += (1.0 − real(trace(U_loop))) / N;

}
}

}

• Mapping: The onsites(ALL) is a 1-to-1 abstraction to ∑x.
• Optimization: Translates a vectorizable operation over X into hardware-specific C++ such as

AVX, HIP, CUDA.
• Communication: Complex data exchange patterns are hidden.
• Flexibility: Balances prototyping without compromising on performance.

Hila is a mature framework actively used in production [1–4].

GPU communication schemes
0. Standard Method (MPI)
Asynchronous GPU-aware MPI where memory packing, transfer, and unpacking must complete
before computation begins:

GPU:

MPI:

Pack Unpack Compute Kernel

I_recv I_send Wait

×N directions ×N directions

1. NCCL/RCCL
Direct interchange of MPI calls for GPU-native calls (NCCL/RCCL).

GPU: Pack *CCL Send and Receive Unpack Compute Kernel

×N directions *CCL group for N directions ×N directions

2. Overlap Scheme (Kernel Bifurcation)
Communication is hidden by bifurcating the compute kernel into independent bulk and halo
kernels [5].

S01:

S02:

MPI:

Pack Unpack

I_recv I_send MPI Wait

Bulk Kernel Halo Kernel

×N directions ×N directions ×N directions ×N directions

sync

3. GPU Native Overlap Scheme
Includes both *CCL and kernel bifurcation. Utilizing native device-initiated networking via GPU
streams for easy overlap [6].

S01:

S02: Pack Unpack*CCL Send and Receive

Bulk Kernel Halo Kernel

×N directions *CCL group for N directions ×N directions

sync

†aaron.haarti@helsinki.fi

Results
Benchmark: Standard Model SU(3) gauge field simulation with halo regions requiring point-to-point communication. SU(N) gauge field simulations are heavily memory bound. Hila assigns one task per GPU.

NCCL vs GPU-Aware MPI Experiments / tests have been performed on CSCS Alps system (GH200 96GB, Slingshot, MPICH, CUDA 12, aws-ofi-nccl, LL128 protocol) and CSC LUMI (MI250x, ROCm 6.0, Slingshot, MPICH, aws-ofi-rccl, LL128 protocol):

NCCL Strong scaling (Inter node): V = {256, 256, 256, 46} ∼ 90GB/GPU at 8 tasks

8 16 32 64 128 256 512
Tasks (log2 )

0

100

200

300

Ti
m

e 
(s

)

Execution Time
NCCL
MPI

8 16 32 64 128 256 512
Tasks (log2 )

1.0

2.0

4.0

8.0

16.0

32.0

64.0

Sp
ee

du
p 

Fa
ct

or
 (l

og
2
)

Speedup
NCCL
MPI
Ideal
75% Efficiency

8 16 32 64 128 256 512
Tasks (log2 )

0.8

1.0

1.2

1.4

Ra
tio

Performance Ratio
NCCL/MPI
MPI/NCCL

• Starting at 8 tasks so that communication is done over network.
• Intra-node variance ∼ 1% (statistically inconclusive) NCCL/MPI performance very similar.
• 8–64 tasks 13–103 MB messages: NCCL achieves 1.07×–1.10× speedup over MPI.

NCCL Weak scaling: lattice points per GPU constant (∼ 65GB per GPU)

4 8 16 32 64 128 256 512
Tasks

240

260

280

300

Ti
m

e 
(s

)

Execution Time
NCCL
MPI

4 8 16 32 64 128 256 512
Tasks

0.9

1.0

1.1

Ra
tio

Performance Ratio

NCCL/MPI
MPI/NCCL

Message Size Distribution

Tasks 36MB 72MB 144MB Total
(N) (%) (%) (%) Msgs

4 95.1 4.9 0.0 12,313
8 95.1 4.9 0.0 18,470

16 63.4 35.0 1.6 18,417
32 31.7 65.0 3.3 18,451
64 23.3 24.6 52.1 50,100

128 23.3 24.6 52.1 50,113
256 23.4 24.6 52.1 50,096
512 23.4 24.6 52.1 50,122

• In weak scaling NCCL displays up to 1.17× speedup.
• 16 → 32 tasks where NCCL scales better indicates that NCCL has available bandwidth.
• Algorithmic caveat triggers surge in message volume and size at 64 Tasks.

NCCL outperforms GPU-aware MPI for large messages (>∼ 13 MB), explained by NCCL subdividing point-to-point transfers into parallel channels, maximizing aggregate throughput [7].
RCCL performs 1.2× – 3× slower as tasks increase, we expect implementation maturity to be at fault. Further tests will be done following ROCm 6.3 LUMI upgrade (January 2026).

Overlap Scheme Experiments / tests have been performed on NVIDIA "Thea" MGX Evaluation System, operated by the HPC Advisory Council. (GH200, CUDA 13, OpenMPI) and CSC LUMI (MI250x, ROCm 6.0, Slingshot, MPICH, aws-ofi-rccl, LL128 protocol):

76 78 80 82 84
Memory Throughput [%]

0

5

10

15

20

25

co
un

t

Kernel 1
fused
NCCL bifurcated
MPI bifurcated

84 85 86 87 88 89 90 91
Memory Throughput [%]

co
un

t

Kernel 2
fused
NCCL bifurcated
MPI bifurcated

Figure 1: fused vs. bifurcated kernel memory throughput histogram (Thea)

2 Tasks 4 Tasks
Time (ms) Ratio Time (ms) Ratio

Default 31.265(40) 1.000 35.349(41) 1.000
MPI 30.870(74) 1.013(3) 34.342(14) 1.029(1)
NCCL 30.712(36) 1.018(2) 34.215(113) 1.033(4)

Table 1: standard method vs overlap (Thea)

• Kernel 2: Saturates memory bandwidth.
– Bifurcation introduces overhead.
– Resources are yielded to overlapping NCCL/MPI calls (branching in Fig. 1).

• Kernel 1: Under-saturated memory bandwidth
– No significant overhead produced from bifurcation.
– Tolerates overlapping communication calls without throughput degradation.

• Speedup is achieved when overhead < Tcomm.
• Speedup increases with task count (Table 1).
• With ROCm 6.0 overhead causes critical performance penalty.

Conclusions
NCCL vs. GPU-Aware MPI

• NCCL outperforms MPI for messages >∼13 MB, achieving
1.07×–1.17× speedup due to higher throughput.

• Intra-node NCCL and MPI performance are statistically equiva-
lent.

• RCCL shows no performance gain; we expect this to be imple-
mentation immaturity.

Overlap Scheme & Platform Analysis

• Overlap is beneficial when communication time > bifurcation
overhead.

• Bandwidth-saturated kernels suffer from bifurcation and must
yield resources to NCCL/MPI calls.

• Under-saturated kernels tolerate overlap.
• Bifurcation on ROCm 6.0 shows performance penalty.

Further research will follow the ROCm 6.3 LUMI upgrade (Jan 2026) and on the upcoming CSC Roihu GH200 system (April 2026).

References

1. CFT-HY Group. HILA: High-Performance Lattice Field Theory Library https:
//github.com/CFT-HY/HILA. 2025.

2. Rindlisbacher, T. et al. Phys. Rev. D 112, 114507 (2025).

3. Annala, J. et al. (June 2025).

4. Correia, J. et al. Phys. Rev. D 111, 063532 (2025).

5. Drach, V. et al. (Mar. 2025).

6. Hamidouche, K. et al. GPU-Initiated Networking for NCCL 2025.

7. Hu, Z. et al. Demystifying NCCL: An In-depth Analysis of GPU Communication
Protocols and Algorithms 2025.


