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Background & Objectives GPU communication schemes

The Exascale Landscape 0. Standard Method (MPI)

e Modern HPC is dominated by Arm and heterogeneous GPU architectures. Asynchronous GPU-aware MPI where memory packing, transfer, and unpacking must complete
e Porting legacy Lattice Field Theory (LFT) code is a bottleneck for research. before computation begins:
* Goal: Achieve high performance without sacrificing code portability.

GPU: Pack Unpack Compute Kernel

The hila Pre-processor

MPI: Wait

e Transforms high-level mathematical representations into architecture-specific code. o -
* Supports: x86, Arm, OpenMP, AVX, CUDA, HIP, and MPL x N directions x N directions
* Designed for easy integration of new hardware architectures.

1. NCCL/RCCL

R h Objecti
esearc jectives Direct interchange of MPI calls for GPU-native calls (NCCL/RCCL).

¢ Integrate NCCL/RCCL for multi-GPU point-to-point communication.
* Implement and evaluate computation-communication overlap. GPU- Pack *CCL Send and Receive Unpack Compute Kernel
* Benchmark against GPU-Aware MPI implementations. N N N )

7 ' '

Evaluate performance for general stencil point-to-point communication. x N directions *CCL group for N directions x N directions

2. Overlap Scheme (Kernel Bifurcation)

Communication is hidden by bifurcating the compute kernel into independent bulk and halo

The hila Pre-processor kernels [5].

We design an LFT code generator which maps mathematical expressions to optimized C++ code. |
For example, the Wilson gauge action: . | Bulk Kernel | Halo Kernel
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This expression is a vectorizable operation at and a reduction over all lattice points. Hila captures x N directions x N directions x N directions x N directions

this structure via a DSL.:
3. GPU Native Overlap Scheme

GaugeField<SU<N, double>> U; Includes both *CCL and kernel bifurcation. Utilizing native device-initiated networking via GPU

. // 1nitialize and update gauge field
Reduction<double> plaq = 0: streams for easy overlap [6].

foralldir(mu) foralldir(nu) if (mu < nu) {
onsites(ALL) { |
SU<N, double> U_loop = U[mu] [X]*U[nu][X + mu]l*xU[mu] [X + nu].dagger()=*U[nu][X].dagger(); . ; Bulk Kernel | Halo Kernel
plag += (1.0 — real(trace(U_loop))) / N; ' ' '

*CCL Send and Receive

'

X N directions *CCL group for N directions X N directions

Mapping: The onsites(ALL) is a 1-to-1 abstraction to ) ,.
Optimization: Translates a vectorizable operation over X into hardware-specific C++ such as
AVX, HIP, CUDA.
e Communication: Complex data exchange patterns are hidden.
* Flexibility: Balances prototyping without compromising on performance. UNIVERSITY OF HELSINKI Taaron.haarti@helsinki.fi

Hila is a mature framework actively used in production [1-4].

Results

Benchmark: Standard Model SU(3) gauge field simulation with halo regions requiring point-to-point communication. SU(N) gauge field simulations are heavily memory bound. Hila assigns one task per GPU.

NCCL vs GPU-Aware MPI Experiments / tests have been performed on CSCS Alps system (GH200 96GB, Slingshot, MPICH, CUDA 12, aws-ofi-nccl, LL128 protocol) and CSC LUMI (MI250x, ROCm 6.0, Slingshot, MPICH, aws-ofi-rccl, LL128 protocol):
NCCL Strong scaling (Inter node): V = {256,256,256,46} ~ 90GB/GPU at 8 tasks NCCL Weak scaling: lattice points per GPU constant (~ 65GB per GPU)
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e Starting at 8 tasks so that communication is done over network. * In weak scaling NCCL displays up to 1.17x speedup.
e Intra-node variance ~ 1% (statistically inconclusive) NCCL/MPI performance very similar. e 16 — 32 tasks where NCCL scales better indicates that NCCL has available bandwidth.

e 8-64 tasks 13-103 MB messages: NCCL achieves 1.07x-1.10x speedup over MPI. * Algorithmic caveat triggers surge in message volume and size at 64 Tasks.

NCCL outperforms GPU-aware MPI for large messages (>~ 13 MB), explained by NCCL subdividing point-to-point transfers into parallel channels, maximizing aggregate throughput [7].
RCCL performs 1.2x — 3x slower as tasks increase, we expect implementation maturity to be at fault. Further tests will be done following ROCm 6.3 LUMI upgrade (January 2026).

Overlap SCheme Experiments / tests have been performed on NVIDIA "Thea” MGX Evaluation System, operated by the HPC Advisory Council. (GH200, CUDA 13, OpenMPI) and CSC LUMI (MI250x, ROCm 6.0, Slingshot, MPICH, aws-ofi-rccl, LL128 protocol):

Kernel 1 Kernel 2 e Kernel 2: Saturates memory bandwidth.

B fused | [ fused 4 Tasks — Bifurcation introduces overhead.

KT NCCL bifurcated K0 NCCL bifurcated 2 TaSkS . . . . .
== MPI bifurcated || = mPI bifurcated Time (ms) Ratio | Time (ms) Ratio — Resources are yielded to overlapping NCCL/MPI calls (branching in Fig. 1).

e Kernel 1: Under-saturated memory bandwidth
Default|31.265(40) 1.000 | 35.349(41) 1.000 — No significant overhead produced from bifurcation.

| L WFH& MPI  [30.870(74) 1.013(3)| 34.342(14) 1.029(1) — Tolerates overlapping communication calls without throughput degradation.
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Table 1: standard method vs overlap (Thea) . .
Figure 1: fused vs. bifurcated kernel memory throughput histogram (Thea) e With ROCm 6.0 overhead causes critical Perfor mance Penalt}’-
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e NCCL outperforms MPI for messages >~13 MB, achieving e Overlap is beneficial when communication time > bifurcation
1.07x-1.17x speedup due to higher throughput. overhead.

* Intra-node NCCL and MPI performance are statistically equiva-  Bandwidth-saturated kernels suffer from bifurcation and must
lent. yield resources to NCCL/MPI calls.

* RCCL shows no performance gain; we expect this to be imple- e Under-saturated kernels tolerate overlap.
mentation immaturity. e Bifurcation on ROCm 6.0 shows performance penalty.




