Background

* In early drug discovery, the
chemical space is vast, but only
a limited number of compounds
can be experimentally tested.

* Therefore, virtual screening has
become widely adopted. In
addition to traditional
molecular docking, the use of o, 01
Al-based prediction models is i ngddt
becoming increasingly common.

* Highly accurate methods are required because poor
prediction performance leads to wasted experimental
resources on false positives and the risk of overlooking
promising candidates (false negatives).

Solution: Introduction of Virtual Screening
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Al Co-folding Model & Objectives

 Recent advances in co-folding models (e.g., AlphaFold 3)
enable direct prediction of protein—ligand complex
structures from protein sequences and ligand structures.

* Boltz-2 predicts both complex structures and binding
affinities, with reported accuracy comparable to free-
energy perturbation (FEP) methods.

 Here, we benchmark an Al-based co-folding method on an
in-house histone methyltransferase inhibitor dataset,
evaluating both throughput and affinity prediction
accuracy across implementations (including NVIDIA NIM).

Protein » Al » Complex
sequence co_folding structure
model
Boltz=2
Ligand » » Affinity
(SMILES) prediction

https://github.com/jwohlwend/boltz

* We further integrate Boltz-2 with generative molecular
design to enable scalable, high-precision virtual screening
and computational lead optimization on HPC.

ex. Target . BCR-ABL1 Kinase

Boltz-2 Prediction

MENFQKVEKIGEGTYGVVYK...
Protein: Amino Acid Sequence

Nclnccc(-c2ccenc2)nl12)cclNclnc....
Ligand: SMILES

~ Dataset & Parameter Settings

Dataset

e 728 small-molecule inhibitors with experimentally measured ICso values
e Target: a histone methylation enzyme (histone methyltransferase)
e Used as a real-world benchmark for affinity prediction and ranking

Boltz-2 implementations compared

@ Original version of Boltz-2 v2.2.0
(https://github.com/jwohlwend/boltz)
(@ NVIDIA NIM version Boltz-2 Release 1.3.0
(https://docs.nvidia.com/nim/bionemo/boltz2/latest/)
* NVIDIA GPU optimized implementation
 Comparison of @ and @ was performed using parameter settings
that matched the default settings of the original

Parameter Settings
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variety and
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* Boltz-2 calculations were performed using an NVIDIA A100 GPU.
 MSA was pre-generated using the original Boltz-2 algorithm.
e Sequences were input as monomers.

Benchmarking Protocol

eCompile experimental data: Collect in-house inhibitory

activity data (ICso) for histone methyltransferase inhibitors
and convert to plCso.
eRun Boltz-2 inference: Predict protein—ligand complex

structures and binding affinities.
eTest multiple implementations/settings: Evaluate multiple

Boltz-2 configurations, including NVIDIA NIM-based
deployments, to assess robustness and throughput under
realistic HPC settings.
eQuantify prediction performance: Compute correlation

metrics (e.g., Pearson and/or Spearman) between predicted
affinities and experimental plCso values.
eCompare with docking baselines: Perform docking-based

scoring and compare affinity correlations to assess
improvement over conventional docking.

Results: Affinity Prediction

Discrimination accuracy

Labels for discrimination performance tests:
IC ;,< 1 uM (301 molecules) - Active
IC .o > 1 uM ( 427 molecules) = Inactive
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 NIM version for both discrimination and regression .
 There was almost no difference in prediction accuracy
when changing parameter settings.

Regression accuracy

Perform regression using plCs, = -log,(ICs)
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Boltz-2-guided Molecular Design (ChemTSv2)

e Molecular generator: ChemTSv2 explores chemical space and
proposes new structures.
e Reward function incorporates Boltz-2 predicted affinity (and
novelty) for the target.
e |terative optimization yields high-activity small-molecule
candidates.
e Approach is readily scalable for large design campaigns on HPC.

Boltz-2 as a reward component for generation
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Results: ChemTS + Botlz score reward

We used ChemTSv2 [2] (MCTS + RNN) for de novo
molecular generation.
Starting scaffold: an active compound (predicted
plCso = 6.0, Boltz score = 0.36).
Grow the molecule from three carbon positions
(A, B, C) by extending substituents.
Activity reward: Boltz score mapped to 0-1(<0.2 - 0,
>0.75 = 1, linear in between).
MW reward: 0—1 score (MW <600 > 1, MW > 610 -
0, linear in between).
Final reward: geometric mean of activity and
MW rewards.
RNN: trained on ChEMBL 220k compounds.
Cvalue: 0.1, 0.2, 0.5.
Filters: remove radicals; apply PubChem rules; SA <
3.5; ringsize< 7.
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* In all structural generation, highly active compounds with
predicted plC., values of 7 or higher were generated.

* In B, a compound with a large molecular weight was
generated that was predicted to be highly active.

* In Aand C, compounds with smaller molecular weights
were generated, although their predicted activity
values were not as high.

Conclusions

* Boltz-2 provides improved affinity prediction
compared with docking on the histone
methyltransferase dataset.

* Boltz-2 + ChemTSv2 enables efficient design of
highly active, novel candidates.

 HPC-friendly workflows support large-scale
virtual screening and design.

* Next: extend to additional targets/datasets, add
synthesizability & ADMET constraints, and
guantify uncertainty.
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