

Benchmarking the Co-folding Model Boltz-2 and Generative Molecular Design for Affinity and Novelty in Histone Methyltransferase Inhibitors

Kazuyoshi Ikeda¹, Yugo Shimizu¹, Hitomi Yuki², Tomohiro Sato², Teruki Honma^{1,2}

¹ HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.

² RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

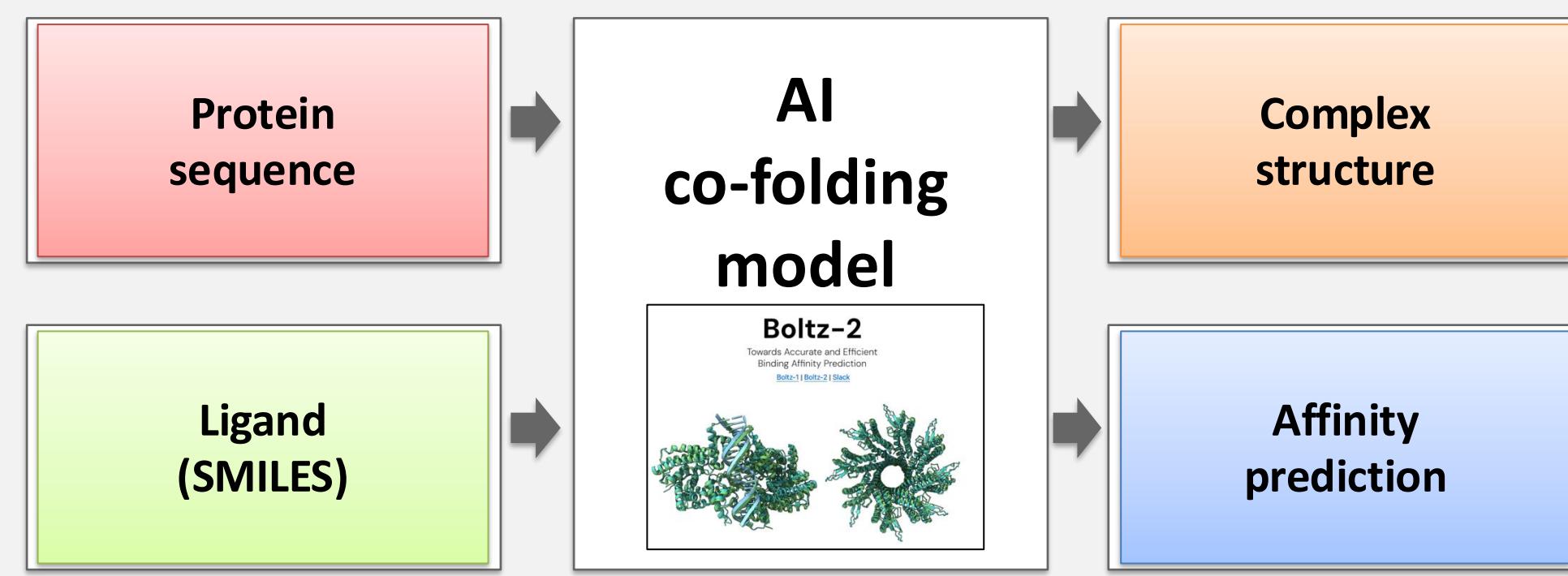
Background

- In early drug discovery, the **chemical space is vast**, but only a limited number of compounds can be experimentally tested.
- Therefore, virtual screening has become widely adopted. In addition to **traditional molecular docking**, the use of **AI-based prediction** models is becoming increasingly common.
- Highly accurate methods are required because poor prediction performance leads to wasted experimental resources on false positives and the risk of overlooking promising candidates (false negatives).



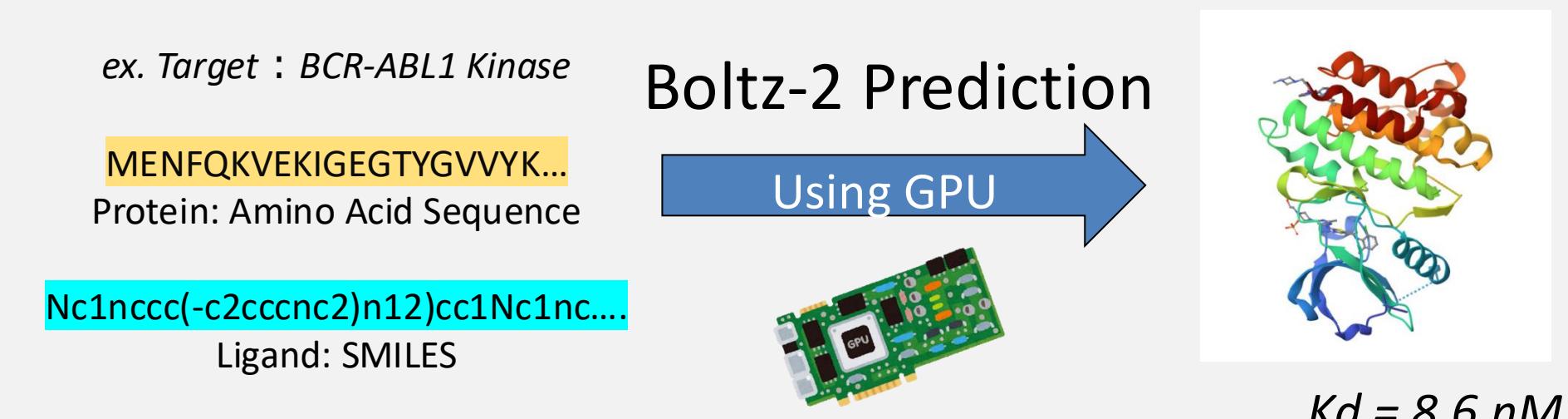
AI Co-folding Model & Objectives

- Recent advances in **co-folding models** (e.g., *AlphaFold 3*) enable direct prediction of **protein–ligand complex structures** from protein sequences and ligand structures.
- Boltz-2** predicts both **complex structures and binding affinities**, with reported accuracy comparable to free-energy perturbation (FEP) methods.
- Here, we benchmark an AI-based co-folding method on an in-house **histone methyltransferase inhibitor dataset**, evaluating both throughput and affinity prediction accuracy across implementations (including **NVIDIA NIM**).



<https://github.com/jwohlwend/boltz>

- We further integrate Boltz-2 with **generative molecular design** to enable scalable, high-precision virtual screening and computational lead optimization on HPC.



Dataset & Parameter Settings

Dataset

- 728 small-molecule inhibitors with experimentally measured IC_{50} values
- Target: a histone methylation enzyme (histone methyltransferase)
- Used as a real-world benchmark for affinity prediction and ranking

Boltz-2 implementations compared

- Original version of Boltz-2 v2.2.0 (<https://github.com/jwohlwend/boltz>)
- NVIDIA NIM version Boltz-2 Release 1.3.0 (<https://docs.nvidia.com/nim/bionemo/boltz2/latest/>)
 - NVIDIA GPU optimized implementation

Comparison of ① and ② was performed using parameter settings that matched the default settings of the original

Parameter Settings

setting	Sampling_steps	Without_potentials	Sampling_steps_affinity	Diffusion_samples_affinity
①② Original version default	200	True	200	5
③ NIM default	50	False	200	5
④ Lightweight NIM setting range	50	False	50	1
10-1000	True/False		10-1000	1-10
Noise Reduction overview	Iterations	The more, the greater the variety and quality	Whether to use	Number of iterations to use for
				Number of diffusion processes used in

- Boltz-2 calculations were performed using an NVIDIA A100 GPU.
- MSA was pre-generated using the original Boltz-2 algorithm.
- Sequences were input as monomers.

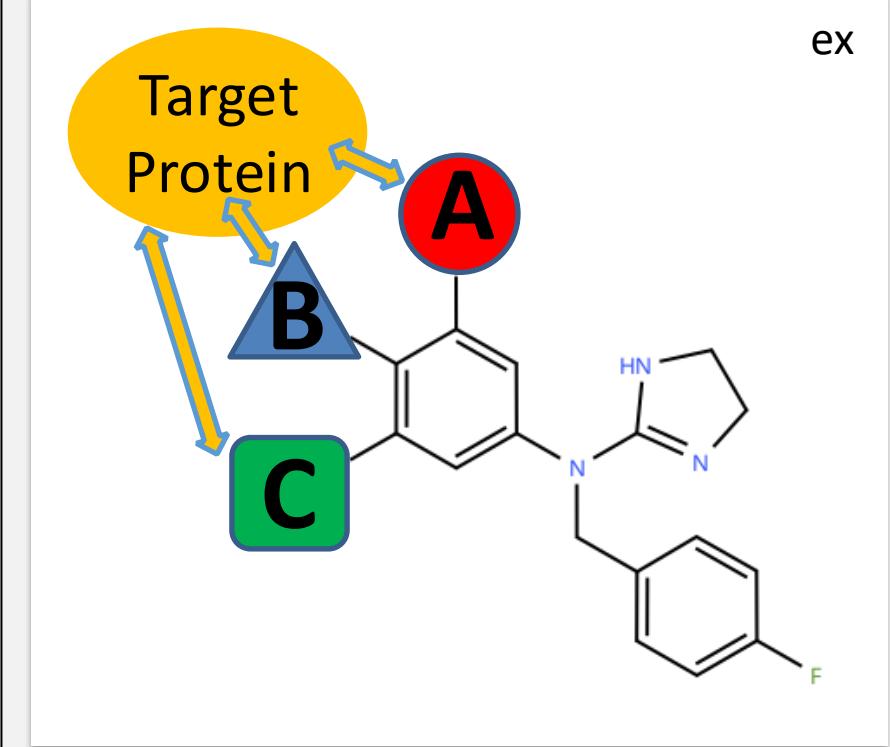
Benchmarking Protocol

- Compile experimental data:** Collect in-house inhibitory activity data (IC_{50}) for histone methyltransferase inhibitors and convert to pIC_{50} .
- Run Boltz-2 inference:** Predict protein–ligand complex structures and binding affinities.
- Test multiple implementations/settings:** Evaluate multiple Boltz-2 configurations, including NVIDIA NIM-based deployments, to assess robustness and throughput under realistic HPC settings.
- Quantify prediction performance:** Compute correlation metrics (e.g., Pearson and/or Spearman) between predicted affinities and experimental pIC_{50} values.
- Compare with docking baselines:** Perform docking-based scoring and compare affinity correlations to assess improvement over conventional docking.

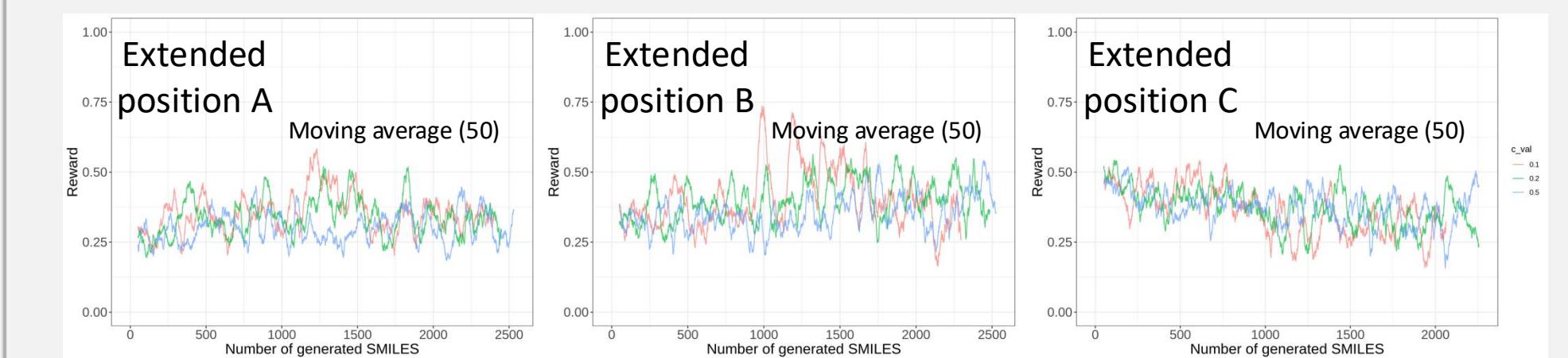
Results: ChemTS + Boltz score reward

We used ChemTSv2 [2] (MCTS + RNN) for de novo molecular generation.

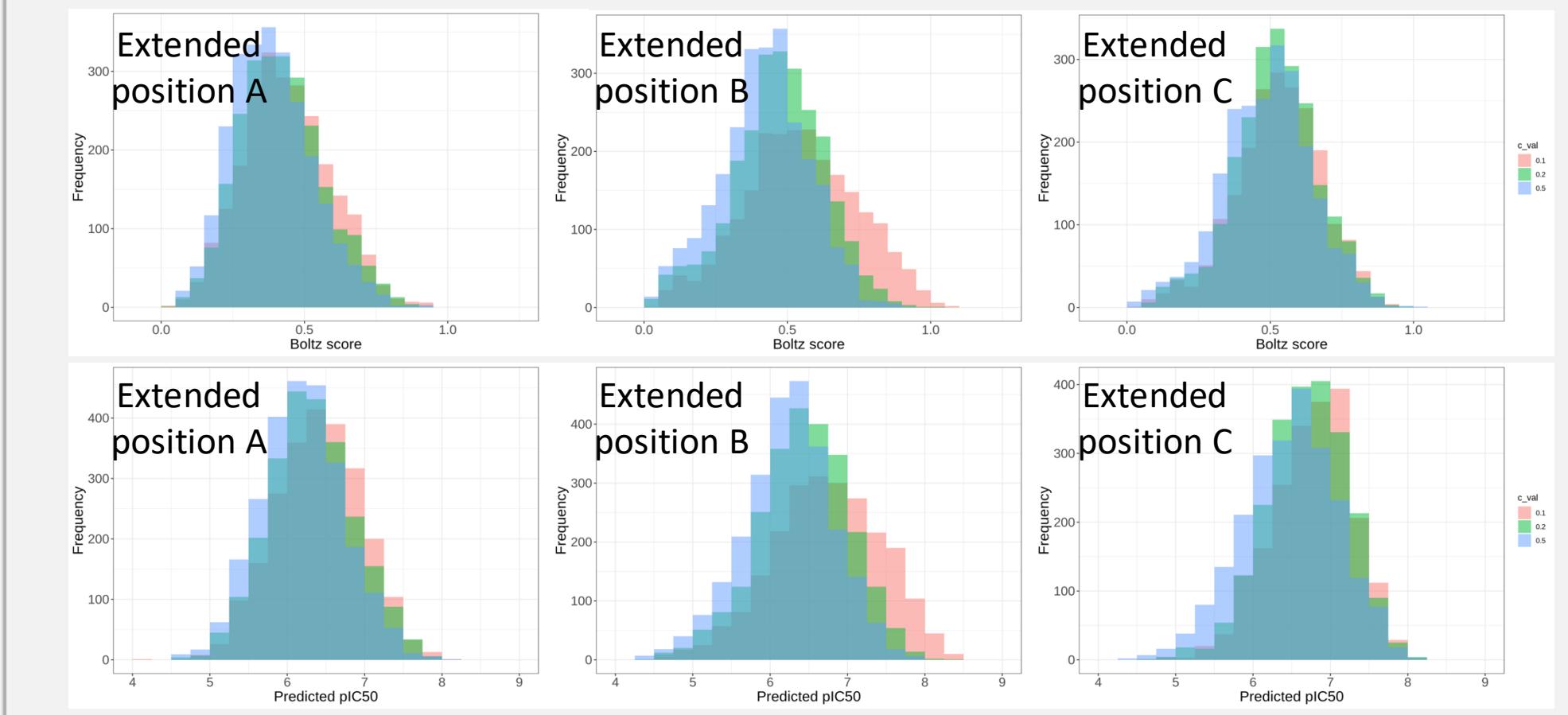
- Starting scaffold: an active compound (predicted $pIC_{50} = 6.0$, Boltz score = 0.36).
 - Grow the molecule from three carbon positions (A, B, C) by replacing substituents.
- Activity reward: Boltz score mapped to 0–1 ($0.2 \rightarrow 0$, $0.75 \rightarrow 1$, linear in between).
- MW reward: 0–1 score ($MW \leq 600 \rightarrow 1$, $MW \geq 610 \rightarrow 0$, linear in between).
 - Final reward: geometric mean of activity and MW rewards.
- RNN: trained on ChEMBL 220k compounds.
- C value: 0.1, 0.2, 0.5.
- Filters: remove radicals; apply PubChem rules; SA ≤ 3.5 ; ring size ≤ 7 .



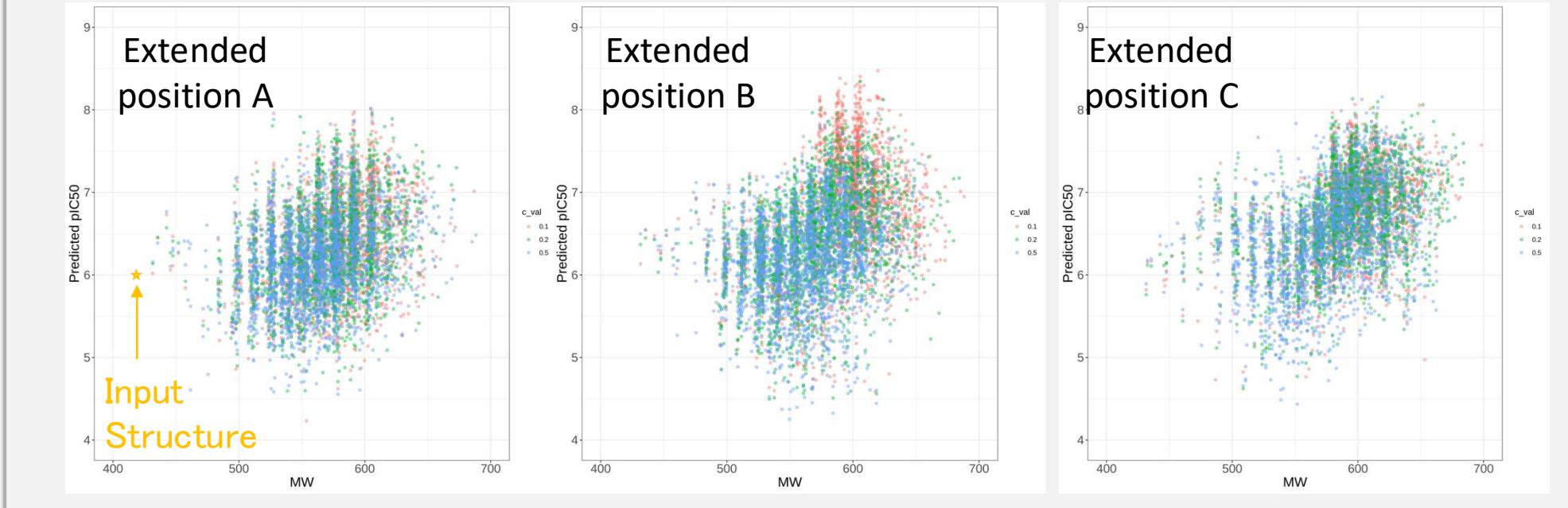
Current Reward Trends



Predicted value distribution of generated compounds



Distribution of MW and predicted binding affinity values of generated compounds



- In all structural generation, highly active compounds with predicted pIC_{50} values of 7 or higher were generated.
- In B, a compound with a large molecular weight was generated that was predicted to be highly active.
- In A and C, compounds with smaller molecular weights were generated, although their predicted activity values were not as high.

Conclusions

- Boltz-2 provides improved affinity prediction compared with docking on the histone methyltransferase dataset.
- Boltz-2 + ChemTSv2 enables efficient design of highly active, novel candidates.
- HPC-friendly workflows support large-scale virtual screening and design.
- Next: extend to additional targets/datasets, add synthesizability & ADMET constraints, and quantify uncertainty.

Acknowledgements & Contact

References :

- Passaro, S. et al. Boltz-2: Towards Accurate and Efficient Binding Affinity Prediction. *bioRxiv*, doi:10.1101/2025.06.14.659707 (2025).
- Ishida, S., et al. ChemTSv2: Functional Molecular Design Using de Novo Molecule Generator. *WIREs Comput. Mol. Sci.*, e1680 (2023).

Acknowledgments :

- This study is part of AMED-BINDS project.
- This research was carried out using NVIDIA NIM.

Conflict of interest disclosure :

- There are no conflicts of interest to disclose in relation to this presentation.

Contact:

- kazuyoshi.ikeda@riken.jp

Boltz-2-guided Molecular Design (ChemTSv2)

- Molecular generator: ChemTSv2 explores chemical space and proposes new structures.
- Reward function incorporates Boltz-2 predicted affinity (and novelty) for the target.
- Iterative optimization yields high-activity small-molecule candidates.
- Approach is readily scalable for large design campaigns on HPC.

