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• Recent advances in co-folding models (e.g., AlphaFold 3) 
enable direct prediction of protein–ligand complex 
structures from protein sequences and ligand structures.

• Boltz-2 predicts both complex structures and binding 
affinities, with reported accuracy comparable to free-
energy perturbation (FEP) methods.

• Here, we benchmark an AI-based co-folding method on an 
in-house histone methyltransferase inhibitor dataset, 
evaluating both throughput and affinity prediction 
accuracy across implementations (including NVIDIA NIM).

• We further integrate Boltz-2 with generative molecular 
design to enable scalable, high-precision virtual screening 
and computational lead optimization on HPC.

•Compile experimental data: Collect in-house inhibitory 
activity data (IC₅₀) for histone methyltransferase inhibitors 
and convert to pIC₅₀.
•Run Boltz-2 inference: Predict protein–ligand complex 
structures and binding affinities.
•Test multiple implementations/settings: Evaluate multiple 
Boltz-2 configurations, including NVIDIA NIM-based 
deployments, to assess robustness and throughput under 
realistic HPC settings.
•Quantify prediction performance: Compute correlation 
metrics (e.g., Pearson and/or Spearman) between predicted 
affinities and experimental pIC₅₀ values.
•Compare with docking baselines: Perform docking-based 
scoring and compare affinity correlations to assess 
improvement over conventional docking.

• Molecular generator: ChemTSv2 explores chemical space and 
proposes new structures.
• Reward function incorporates Boltz-2 predicted affinity (and 
novelty) for the target.
• Iterative optimization yields high-activity small-molecule 
candidates.
• Approach is readily scalable for large design campaigns on HPC.

• Boltz-2 provides improved affinity prediction 
compared with docking on the histone 
methyltransferase dataset.

• Boltz-2 + ChemTSv2 enables efficient design of 
highly active, novel candidates.

• HPC-friendly workflows support large-scale 
virtual screening and design.

• Next: extend to additional targets/datasets, add 
synthesizability & ADMET constraints, and 
quantify uncertainty.
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| Correlation coefficient | = 0.382

Autodock Vina
| Correlation coefficient | = 0.263

Discrimination accuracy
Labels for discrimination performance tests:

• IC 50 ≤ 1 μM ( 301 molecules) → Active
• IC 50 > 1 μM ( 427 molecules) → Inactive

Regression accuracy
Perform regression using pIC50 = -log10(IC50)

• NIM version for both discrimination and regression .
• There was almost no difference in prediction accuracy 

when changing parameter settings.

Comparison: Physics-based docking methods:

• Original Boltz-2
• Pearson correlation coefficient 

= 0.466
• NIM lightweight setup is the most 

efficient as it is fast.
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https://github.com/jwohlwend/boltz

Dataset

• 728 small-molecule inhibitors with experimentally measured IC₅₀ values

• Target: a histone methylation enzyme (histone methyltransferase)

• Used as a real-world benchmark for affinity prediction and ranking

Boltz-2 implementations compared

① Original version of Boltz-2 v2.2.0 
(https://github.com/jwohlwend/boltz)

② NVIDIA NIM version Boltz-2 Release 1.3.0 
(https://docs.nvidia.com/nim/bionemo/boltz2/latest/)
• NVIDIA GPU optimized implementation

• Comparison of ① and ② was performed using parameter settings 
that matched the default settings of the original 

Parameter Settings

setting Sampling_steps
Without_
potentials

Sampling_steps 
_affinity

Diffusion_samples 
_affinity

①② Original 
version default

200 True 200 5

③ NIM default 50 False 200 5
④ Lightweight 50 False 50 1
NIM setting 
range

10-1000 True/False 10-1000 1-10
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• Boltz-2 calculations were performed using an NVIDIA A100 GPU.
• MSA was pre-generated using the original Boltz-2 algorithm.
• Sequences were input as monomers.

ex. Target：BCR-ABL1 Kinase

MENFQKVEKIGEGTYGVVYK…
Protein: Amino Acid Sequence

Nc1nccc(-c2cccnc2)n12)cc1Nc1nc….
Ligand: SMILES

Boltz-2 Prediction

Using GPU

Input 
Structure

Distribution of MW and predicted binding affinity values ​​of generated compounds

• In all structural generation, highly active compounds with 
predicted pIC50 values ​​of 7 or higher were generated.

• In B, a compound with a large molecular weight was 
generated that was predicted to be highly active.

• In A and C, compounds with smaller molecular weights 
were generated, although their predicted activity 
values ​​were not as high.
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Kd = 8.6 nM

We used ChemTSv2 [2] (MCTS + RNN) for de novo 
molecular generation.
• Starting scaffold: an active compound (predicted 

pIC₅₀ = 6.0, Boltz score = 0.36).
• Grow the molecule from three carbon positions 

(A, B, C) by extending substituents.
• Activity reward: Boltz score mapped to 0–1 (≤0.2 → 0, 

≥0.75 → 1, linear in between).
• MW reward: 0–1 score (MW ≤ 600 → 1, MW ≥ 610 → 

0, linear in between).
• Final reward: geometric mean of activity and 

MW rewards.
• RNN: trained on ChEMBL 220k compounds.
• C value: 0.1, 0.2, 0.5.
• Filters: remove radicals; apply PubChem rules; SA ≤ 

3.5; ring size ≤ 7.
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• In early drug discovery, the 
chemical space is vast, but only 
a limited number of compounds 
can be experimentally tested.

• Therefore, virtual screening has 
become widely adopted. In 
addition to traditional 
molecular docking, the use of 
AI-based prediction models is 
becoming increasingly common.

• Highly accurate methods are required because poor 
prediction performance leads to wasted experimental 
resources on false positives and the risk of overlooking 
promising candidates (false negatives).
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