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ABSTRACT

VHH antibodies (nanobodies) are small and easy to engineer,
making them promising therapeutic candidates. However, their thermal
stability is sequence-dependent, and experimental measurement of the
melting temperature (T,) Is costly. While molecular dynamics
simulations can compute stability-related quantities such as AAG,
these calculations are computationally demanding and require
significant HPC resources. Sim2Real transfer learning, which
leverages large-scale simulation data to enhance predictions on limited
experimental data, has proven effective in materials science. In this
work, we apply Sim2Real transfer learning to nanobody thermal
stability prediction. Since experimental T,, values and simulation-
derived AAG values cannot be directly combined, we propose a
multitask learning approach with shared representations to bridge the
gap between simulation and real-world data.

 To evaluate the effect of data scale, we

* Conversely, we varied the number of

BACKGROUND

VHH antibodies and Current Challenges

VHH antibodies are small and easy to engineer, making them attractive
candidates for therapeutic applications.

Their thermal stability is highly dependent on amino acid sequence, and
experimental evaluation of stability, typically via measurement of the
melting temperature (T,,), is costly and time-consuming.

C. Hamers-Casterman, et al., Nature 363, 446 (1993).
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Machine learning—based methods have been developed to predict
protein stability; however, their predictive performance is often limited by
the scarcity of experimental data.

Multitask learning framework

S. Minami, et al., Npj Comput Mater 11, 146 (2025).

To enable Sim2Real transfer, the model was trained within a multitask
learning framework. The architecture consists of a shared MLP
backbone that learns a common latent representation across tasks,
along with task-specific heads for predicting experimental melting
temperatures (T,,) and simulation-derived AAG values.

Computational details
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varied the number of simulation samples
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from 10 to 846 while fixing the number of

experimental T,, samples at 56.

shared MLP

experimental T,, samples from 10 to 567
while fixing the number of simulation
samples at 846, and conducted validation
under these settings.
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RESULTS
_ _ _ * Multitask learning consistently
Scaling for simulation data outperformed the single-task
78 model trained only on
o B experimental melting temperature

(T,) data.
* Furthermore, a comparison
between AAG values computed
73- - by MD-FEP and Rosetta showed
72 that using MD-FEP-derived AAG
71+ led to improved prediction
701 - et accuracy. The corresponding
approximation is shown below.
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Scaling for experimental data

 When scaling analysis was
e WD performed based on experimental
0] Bl data, a stronger scaling behavior
N was observed compared to that
" based on simulation data.
* Furthermore, a comparison
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* |In this study, we aim to improve prediction accuracy by leveraging
simulation-derived data through Sim2Real transfer learning. 71
 |In addition, we quantitatively evaluate how simulation-derived data
contribute to predictive performance relative to experimental data,
assessing the extent to which simulation samples can compensate for 5 L
limited experimental measurements.

between AAG values computed by
MD-FEP and Rosetta showed that
using MD-FEP—derived AAG was
more effective in improving
prediction accuracy.
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AG
* Protein structural stability is described by the folding free energy (AG),

The marginal rate of substitution is estimated based on the scaling
results obtained from simulation and experimental data.

defined as the free energy difference between the folded and unfolded p

states; however., direct computation of AG is ger?eral y difficult because it Ei_‘g,.r ~ —9034 x 102 ay ~ _E5 630 % 103

requires extensive sampling of a vast conformational space. dn, dm
n==4a46 m==0ab

AAG
 AAG corresponds to the difference between the folding free energy (AG) of a dn _ | L
mutant protein and that of the wild-type sequence, representing a relative E ~ 276.9 Th? marginal rate of substitution was

(n,m)=(846,56) estimated to be 276.9.

change in structural stability induced by mutation.
Because AAG can be computationally evaluated, it is adopted as the target

variable for training data in this study. CONCLUSION
MD-FEP Wild Type Mutation Type » In this study, we demonstrated Sim2Real transfer learning for predicting
. Phvsics-based ! unfolded unfolded the thermal stability of nanobodies by integrating simulation-derived AAG
apgrscl)(;i-h assgng data and experimental melting temperature (T,,) data through multitask
usi folded / _mutation | learning.
molelc u!ar dyn%n];ncs ‘;1 / folded * The estimated marginal rate of substitution (277:1) provides a quantitative
simulations an ree 5’ 3 guideline on the extent to which simulation data should be leveraged to
ilr_ler:gy perturbation § \./ I Alfolded \ / compensate for limited experimental data, thereby contributing to the
) C(;Sr;npi?ac’ctijcr)i(;)llly?Ut = AGrorden efficient allocation of HPC resources in biomolecular simulations.
expensive ON-GOING STUDIES
* Performing multitask learning using folding free energies (AG) instead of
Rosetta

AAG to incorporate simulation data more directly related to the melting
temperature (T,,)
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« Structure-based approach using Monte Carlo sampling with an empirical
energy function

<
« Computationally efficient but less accurate than physics-based methods ~g”
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