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ABSTRACT

VHH antibodies (nanobodies) are small and easy to engineer, 

making them promising therapeutic candidates. However, their thermal 

stability is sequence-dependent, and experimental measurement of the 

melting temperature (Tₘ) is costly. While molecular dynamics 

simulations can compute stability-related quantities such as ΔΔG, 

these calculations are computationally demanding and require 

significant HPC resources. Sim2Real transfer learning, which 

leverages large-scale simulation data to enhance predictions on limited 

experimental data, has proven effective in materials science. In this 

work, we apply Sim2Real transfer learning to nanobody thermal 

stability prediction. Since experimental Tₘ values and simulation-

derived ΔΔG values cannot be directly combined, we propose a 

multitask learning approach with shared representations to bridge the 

gap between simulation and real-world data.

• VHH antibodies are small and easy to engineer, making them attractive 

candidates for therapeutic applications.

• Their thermal stability is highly dependent on amino acid sequence, and 

experimental evaluation of stability, typically via measurement of the 

melting temperature (Tₘ), is costly and time-consuming.

BACKGROUND

• Machine learning–based methods have been developed to predict 

protein stability; however, their predictive performance is often limited by 

the scarcity of experimental data.

• In this study, we aim to improve prediction accuracy by leveraging 

simulation-derived data through Sim2Real transfer learning.

• In addition, we quantitatively evaluate how simulation-derived data 

contribute to predictive performance relative to experimental data, 

assessing the extent to which simulation samples can compensate for 

limited experimental measurements.

METHOD

RESULTS

• Protein structural stability is described by the folding free energy (ΔG), 

defined as the free energy difference between the folded and unfolded 

states; however, direct computation of ΔG is generally difficult because it 

requires extensive sampling of a vast conformational space.

To enable Sim2Real transfer, the model was trained within a multitask 

learning framework. The architecture consists of a shared MLP 

backbone that learns a common latent representation across tasks, 

along with task-specific heads for predicting experimental melting 

temperatures (Tₘ) and simulation-derived ΔΔG values.

• To evaluate the effect of data scale, we 

varied the number of simulation samples 

from 10 to 846 while fixing the number of 

experimental Tₘ samples at 56.

• Conversely, we varied the number of 

experimental Tₘ samples from 10 to 567 

while fixing the number of simulation 

samples at 846, and conducted validation 

under these settings.

• Multitask learning consistently 

outperformed the single-task 

model trained only on 

experimental melting temperature 

(Tₘ) data.

• Furthermore, a comparison 

between ΔΔG values computed 

by MD-FEP and Rosetta showed 

that using MD-FEP–derived ΔΔG 

led to improved prediction 

accuracy. The corresponding 

approximation is shown below.

CONCLUSION
• In this study, we demonstrated Sim2Real transfer learning for predicting 

the thermal stability of nanobodies by integrating simulation-derived ΔΔG 

data and experimental melting temperature (Tₘ) data through multitask 

learning.

• The estimated marginal rate of substitution (277:1) provides a quantitative 

guideline on the extent to which simulation data should be leveraged to 

compensate for limited experimental data, thereby contributing to the 

efficient allocation of HPC resources in biomolecular simulations.

ON-GOING STUDIES

ΔG

Multitask learning framework

ΔΔG

• ΔΔG corresponds to the difference between the folding free energy (ΔG) of a 

mutant protein and that of the wild-type sequence, representing a relative 

change in structural stability induced by mutation.

Because ΔΔG can be computationally evaluated, it is adopted as the target 

variable for training data in this study.

• Physics-based 

approach using 

molecular dynamics 

simulations and free 

energy perturbation

• High accuracy but 

computationally 

expensive

MD-FEP

• Structure-based approach using Monte Carlo sampling with an empirical 

energy function 

• Computationally efficient but less accurate than physics-based methods 

Rosetta

Computational details
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The marginal rate of substitution is estimated based on the scaling 

results obtained from simulation and experimental data.

Scaling for simulation data

Scaling for experimental data
• When scaling analysis was 

performed based on experimental 

data, a stronger scaling behavior 

was observed compared to that 

based on simulation data.

• Furthermore, a comparison 

between ΔΔG values computed by 

MD-FEP and Rosetta showed that 

using MD-FEP–derived ΔΔG was 

more effective in improving 

prediction accuracy.

The marginal rate of substitution was 

estimated to be 276.9.

• Performing multitask learning using folding free energies (ΔG) instead of 

ΔΔG to incorporate simulation data more directly related to the melting 

temperature (Tₘ)
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