

A High-Performance Sparse Voxel Grid Framework for Intrinsic 3D Reconstruction on GPUs

Zihang Zhang* and Fumihiko Ino

Graduate School of Information Science and Technology, The University of Osaka

*email: zh-zhang@ist.osaka-u.ac.jp

Introduction

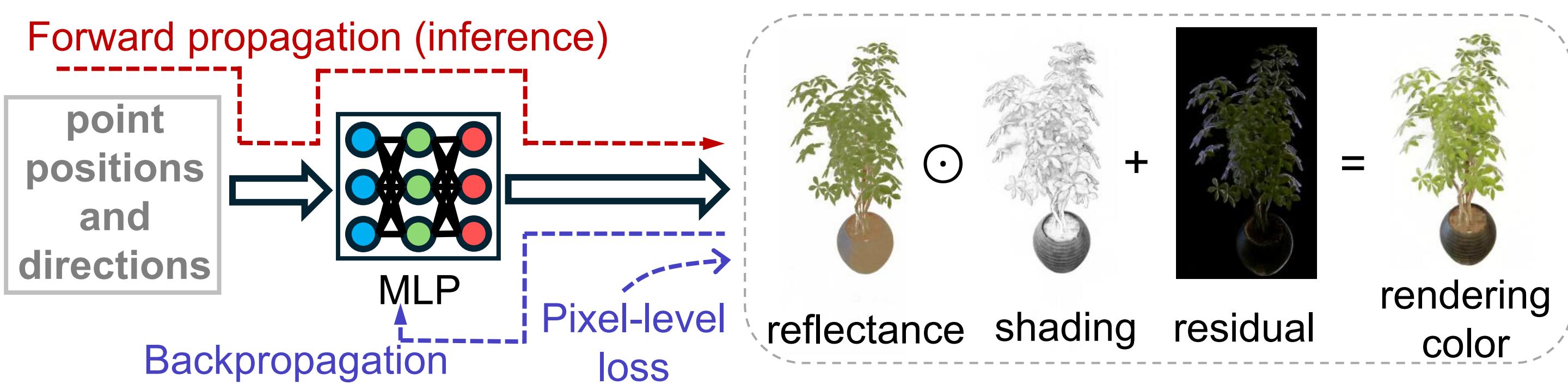
Background

- Intrinsic decomposition is a fundamental task in inverse rendering, aiming at **estimating scene attributes** from observed images.
$$\text{RGB color} = \text{reflectance} \odot \text{shading} + \text{residual} \quad (1)$$
- This decomposition enables **independent editing** of material and lighting.
- reflectance: base color**; shading: illumination; residual: specular lighting.

Motivations & Goals

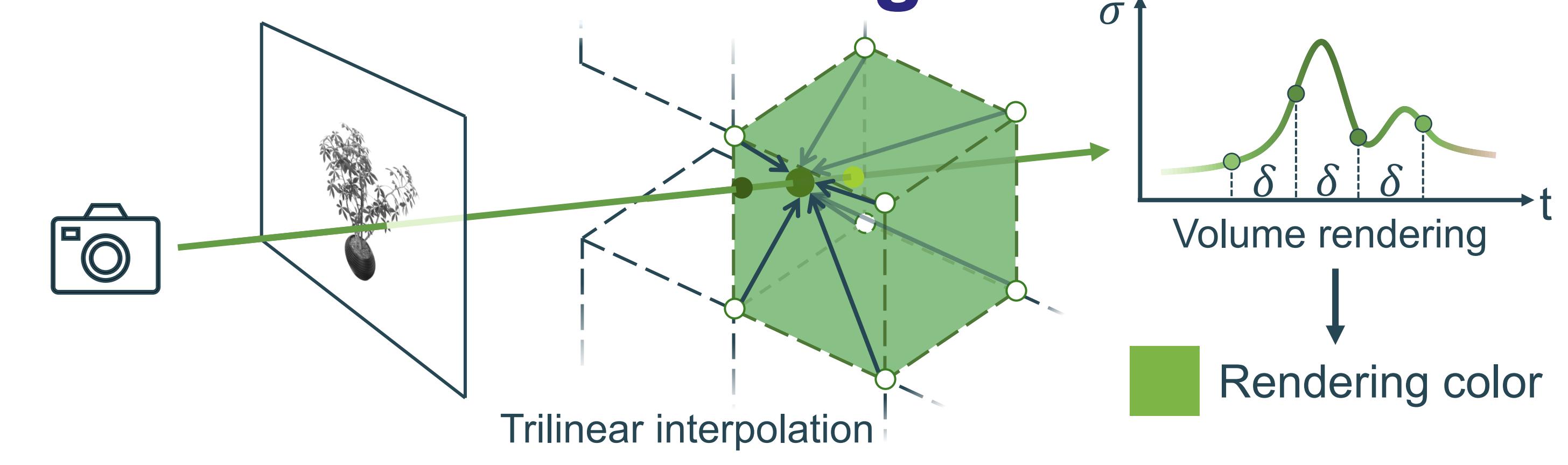
- Existing neural methods [1] represent scene attributes via neural networks (MLPs), resulting in **slow inference speeds** and **limited parallelism**.
- We propose IntrinsicGrid to replace MLPs with **Sparse Voxel Grids**, enabling direct memory access and mapping rays to GPU threads for **significant acceleration**.

Neural Rendering & Decomposition



- Neural network-based methods [1] use MLPs to **implicitly** store and represent scene attributes.
- High latency:** A complete MLP forward propagation is required to sample a single point due to **sequential layer dependencies**.
- Lack of spatial information:** Operate in 2D image space or latent spaces, losing spatial information necessary for decomposition.

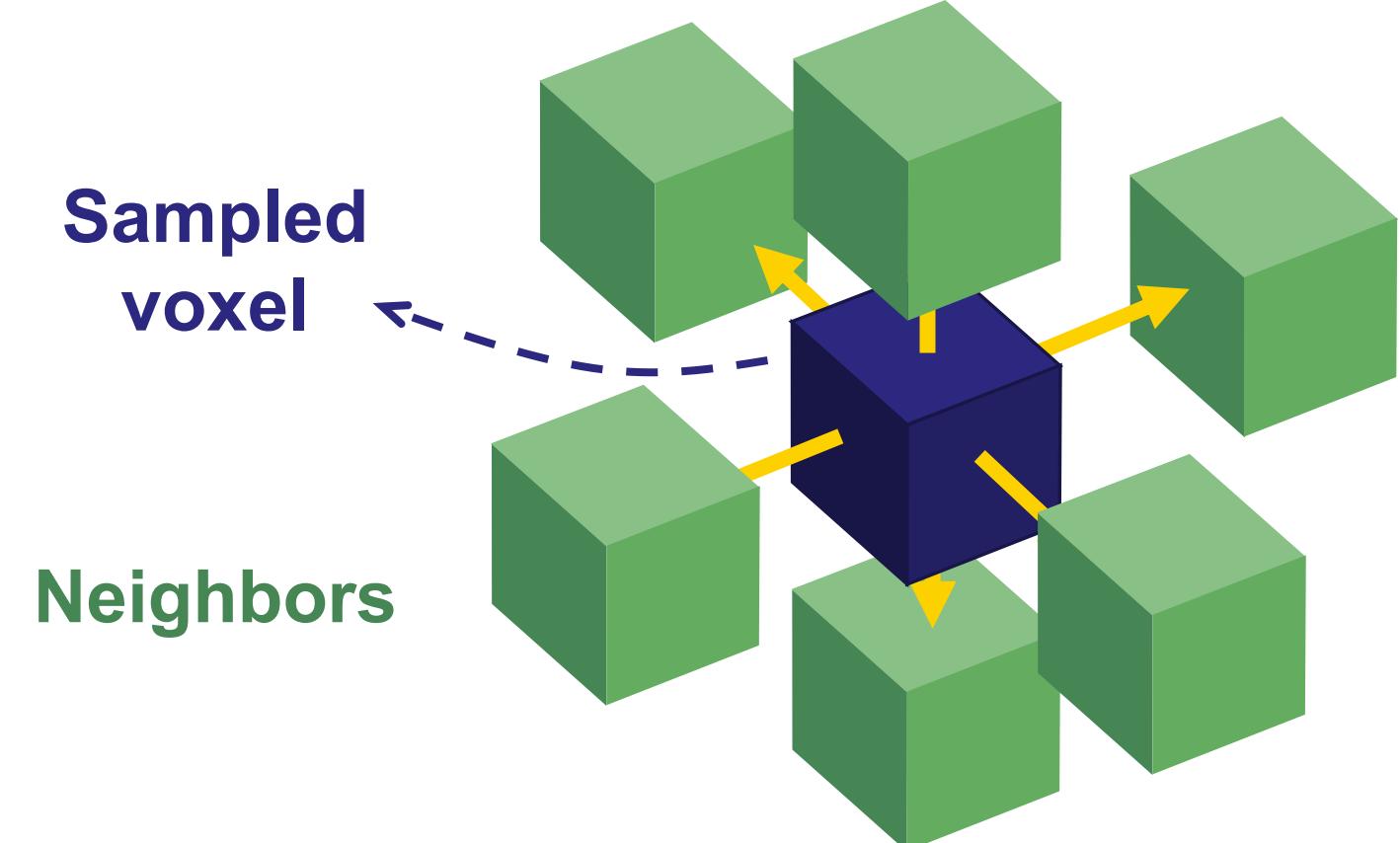
Grid-based Rendering



- Grid-based methods (inspired by Plenoxels [2]) **explicitly** store scene attributes in 3D voxel grids.
- Fast sampling:** Directly access **grid voxels** to get stored sampling point values without neural network overhead.
- Spatial coherence:** Enable **efficient** spatial constraints on **spatially neighboring voxels** via grid indexing.

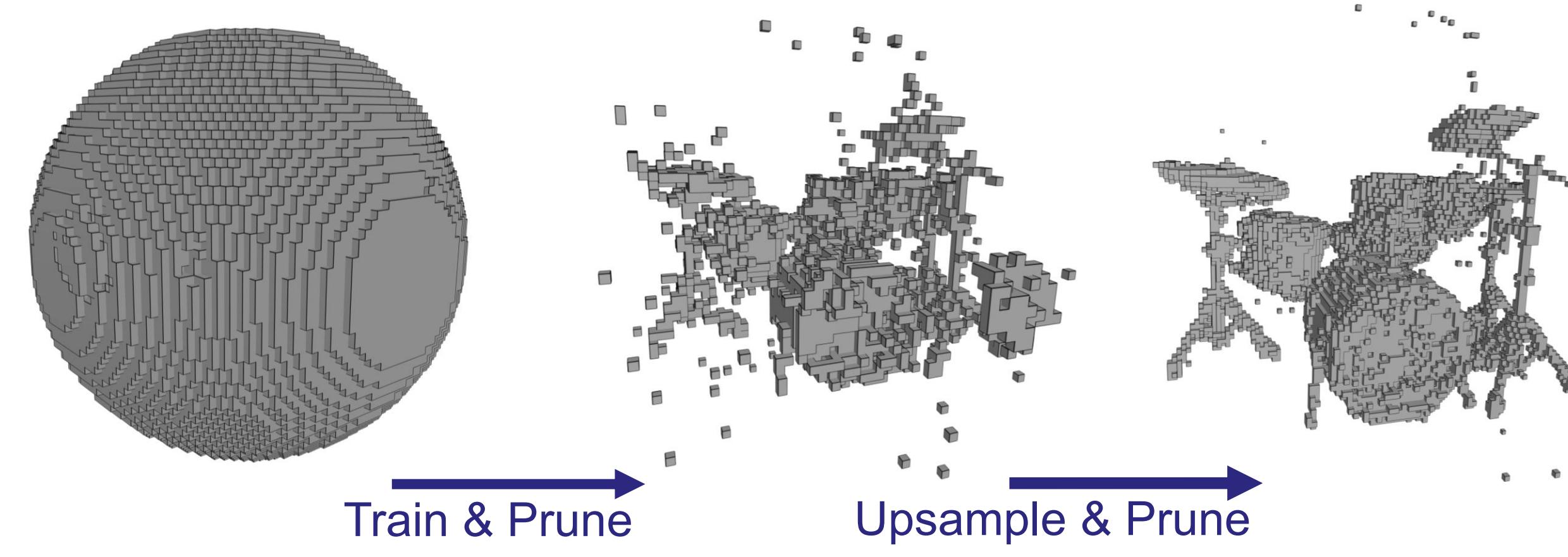
Proposed Framework: IntrinsicGrid

1. Spatial Constraints



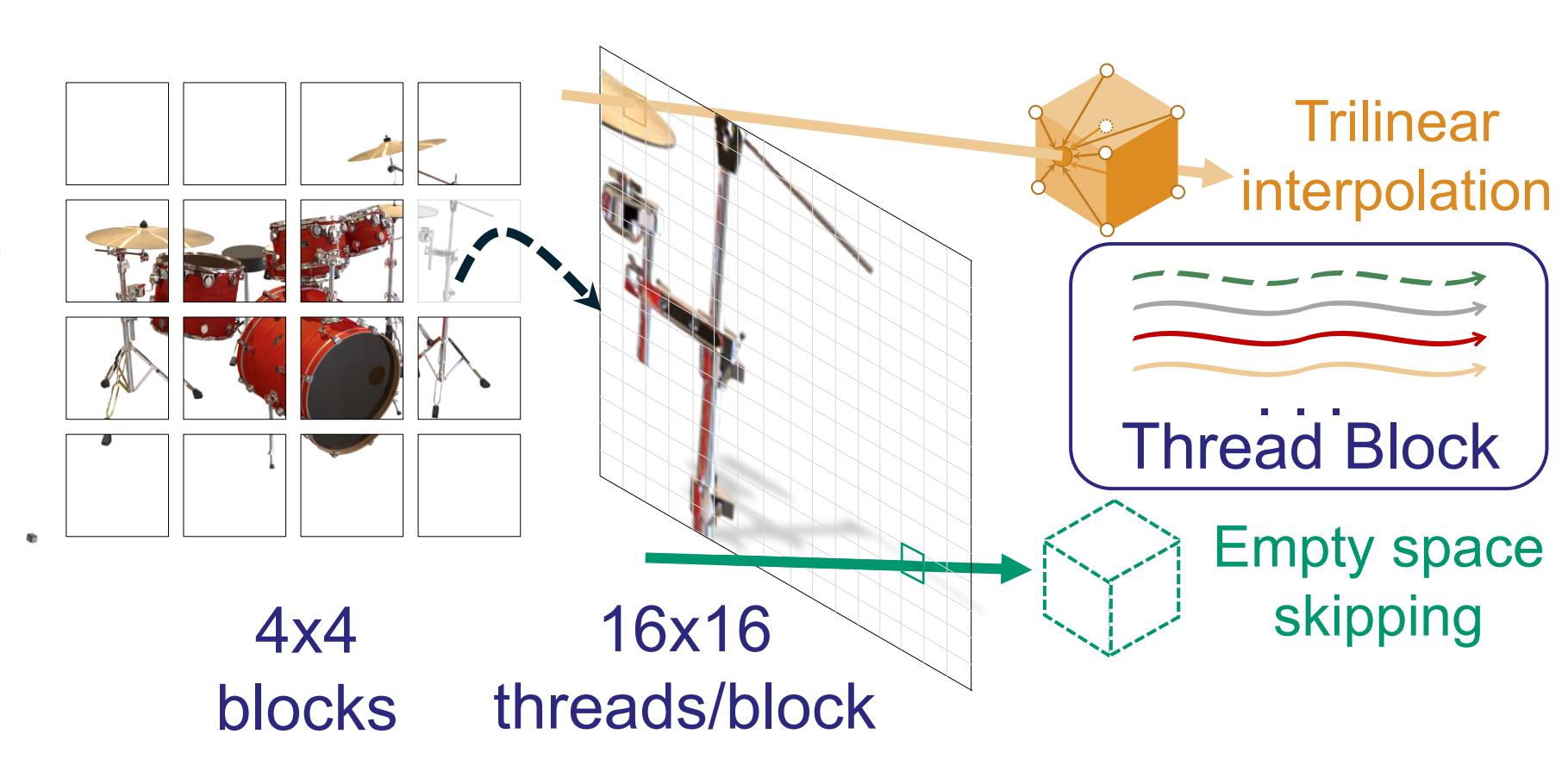
- Randomly sample 1% of the voxels.**
- Apply spatial smoothness constraints to the voxels and their 6 neighboring voxels to address decomposition ambiguity within acceptable overhead.

2. Coarse-to-Fine Sparse Grid Optimization



- We **optimize the target scene attributes** (reflectance, shading, and residual) **stored in sparse voxel grid** without any neural networks.
- Training starts at a low resolution** to reduce computation.
- Prune empty voxels** to maintain grid sparsity.

3. Custom CUDA Acceleration

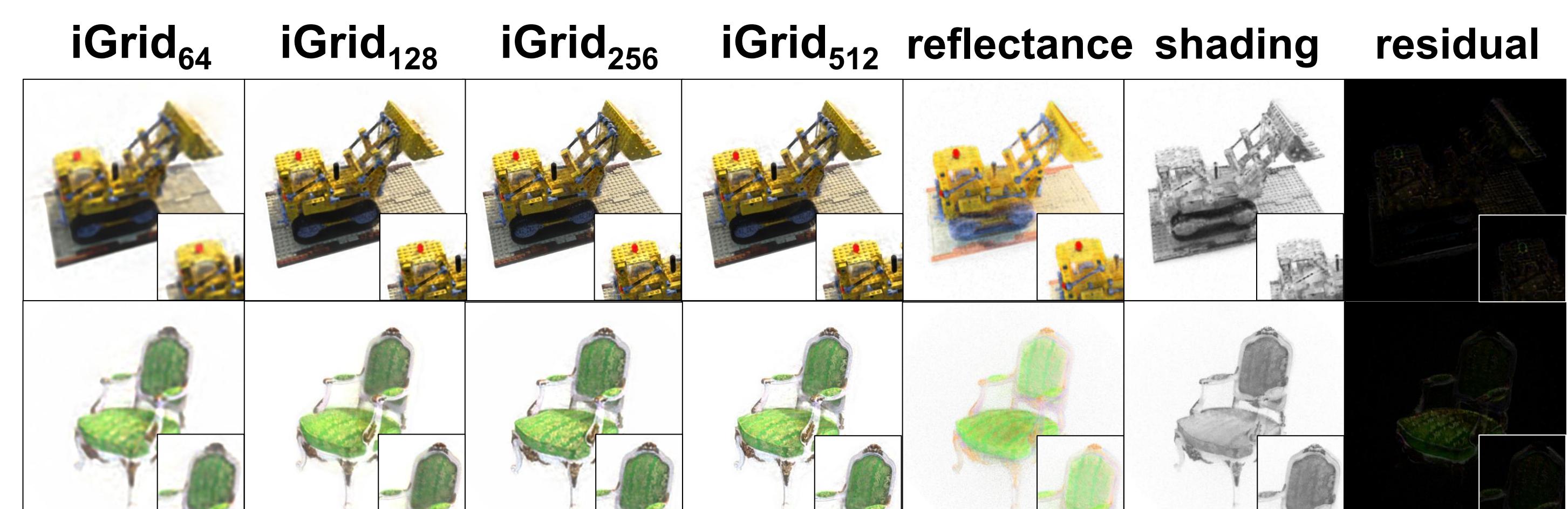


- Each sampling ray** is assigned to one GPU thread for **independent processing**.
- Ray marching is **fully on GPU**, eliminating data transfer overhead.
- Only for forward propagation.**

Experimental Results

Metrics	iNeRF	iGrid ₆₄	iGrid ₁₂₈	iGrid ₂₅₆	iGrid ₅₁₂	SVOX2
Training (h)	7.25	0.35	1.17	2.41	4.37	0.12
Rendering (s)	6.83	0.23	0.41	0.66	1.45	—
Speedup	1x	29.7x	16.7x	10.3x	4.7x	—
CUDA Render (ms)	—	2.75	6.06	19.82	49.10	43.83
CUDA Speedup	—	2484x	1127x	345x	139x	—
PSNR [↑] (avg.)	29.94	24.36	26.96	28.07	28.46	30.98

- Setup:** Evaluated on the *NeRF-Synthetic* dataset using a single NVIDIA RTX 6000 Ada with PyTorch 2.9.0, CUDA 12.8, and CUDA toolkit 12.8.
- IntrinsicNeRF:** iNeRF [1]. • **SVOX2: Plenoxels** [2] with resolution 512, a sparse voxel grid-based rendering method.
- IntrinsicGrid:** iGrid (ours).



- iGrid **renders over two orders of magnitude faster** than iNeRF.
- iGrid has **comparable rendering quality** to iNeRF.
- Choose suitable grid resolution for downstream tasks based on the requirements and hardware capability.

Conclusion

- The results indicate that intrinsic decomposition-based 3D reconstruction can be accelerated using sparse voxel grids to exploit the **massive parallelism of modern GPUs**.
- IntrinsicGrid achieves over **139x faster rendering** than IntrinsicNeRF with **moderate quality trade-off** (PSNR 28.46 vs 29.94), making it suitable for interactive editing applications.
- These findings highlight the potential of **IntrinsicGrid as a general and efficient framework for evaluating diverse decomposition assumptions** and accelerating inverse rendering pipelines.

Acknowledgements

This study was in part supported by the Japan Society for the Promotion of Science KAKENHI grant number 23K28061.

References

- [1] Weicai Ye, Shuo Chen, Chong Bao, Huijun Bao, Marc Pollefeys, Zhaopeng Cui, and Guofeng Zhang. 2023. IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable Novel View Synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 339–351
- [2] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinzhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5501–5510.
- [3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In Proceedings of the European Conference on Computer Vision. 405–421.